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Figure 1: LEFT: Two Nao robots act out a story using space and gesture. A display with a webcam provides live-feedback to
users while tracking their emotions and gestures. An Echo device narrates the tale. RIGHT: The user provides a thumbs up
during storytelling, which alters to course of the story.

ABSTRACT
We describe the design and implementation of a multi-modal story-
telling system. Multiple robots narrate and act out an AI-generated
story whose plots can be dynamically altered via non-verbal audi-
ence feedback. The enactment and interaction focuses on gestures
and facial expression, which are embedded in a computational
framework that draws on cognitive-linguistic insights to enrich
the storytelling experience. With the absence of in-person user
studies in this late breaking research, we present the validity of the
separate modules of this project and introduce it to the HRI field.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Computing methodologies → Multi-agent systems; • Com-
puter systems organization → Robotics.
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1 INTRODUCTION
With recent advances in language generation [6, 24], writing stories
is no longer left to the creativity of human writers, but shows
promising results by machines [5, 42]. However, there is more
to storytelling than text generation, and the enactment of a tale
through movement and gesture facilitates a greater engagement
with the plot [40]. Having an embodied agent, more specifically, a
robotic one, can leap a creative AI system from mere generation to
true creativity by providing live-feedback and interaction [36].

Previous work with robotic agents and AI-storytellers made use
of minimal interactivity using simple vocal prompts. With prompts
like "Yes" and "No", a user was able to pre-determine the plot to
be told, by essentially engaging in a co-creative search in a dense
graph of branching story lines [38]. In the present implementation,
we aim to further engage the user in the telling, and make them feel
greater responsibility for plot turns as the tale is told.We look at two
modalities, gesture and facial expression, which have previously
been studied in the context of storytelling with robots [9, 12, 23],
and transfer those modalities onto the interacting human.

In much the same way that Emperor Commodus dictates the
fate of the gladiator Maximus in the movie Gladiator (see Fig. 2),
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Figure 2: Example of the pose recognition and facial expres-
sion recognition software with a cartoon inspired by Gladi-
ator (2000) [25]. In this image the emperor decides the fate
of Gladiator Maximus with a verso pollice, a turned thumb.

we want users to be able to decide the fate of protagonists during
a robotic performance. To achieve this, we combine two neural
network models: One to classify hand gestures, another to recog-
nize facial emotions. The former identifies diverse hand shapes, but
we focus here on the detection of verso pollice, the turned thumb,
while the latter suggests the sentiment of the action by recognizing
emotions on the user’s face. As an example, Fig. 2 depicts a car-
toon of actor Joaquin Phoenix raising his right arm and showing a
thumbs up gesture. An overlay of lines depicts the tracked joints
and a boundary box. The latter tracks facial emotions and describes
Phoenix as mostly neutral and somewhat sad. This combination
of non-verbal signals can prompt the system to alter its story-line
in mid-telling, with the robots reacting accordingly. While robotic
storytelling is not new [21, 29] and neither are robotic or human
gestures for interaction [1, 16], the hallmark of the robot move-
ments used in this work is their schematic foundation. Based on
cognitive-linguistic insights from [20, 34, 39], the robots aim to
spatially mirror the semantics of each story action. For example,
an insult action increases emotional distance, so the robots move
further apart [41]. When spatial motions and pantomimic gestures
are coherently used to mirror the plot, audiences show greater
appreciation for a tale and its telling [40]. Gestures by audience
members should be equally schematic, even if they exploit a vertical
spatial metaphor (up=good, down=bad) rather than a lateral one
(closer=positive, farther=negative).

This schematic underpinning is described in greater detail in the
system description of the next section, where we outline our ap-
proach to its evaluation. The focus of this late-breaking paper is the
description and validation of the separate parts of the whole, which
are situated in the field of Human-Robot interaction. Furthermore,
it justifies the use of gestures for both robots and humans by ap-
pealing to a common schematic grounding. The novel contribution
of this work, building on past research can be summarized as:

• Remodelling of a pre-existing story generation system to
allow live-interaction that alters the course of the story

• Installation of a neural network model in order to allow
interaction via gestures

• Installation of a neural network model in order to evaluate
the interaction based on facial emotion expression

• Introduction of an approach for spatial and schematic move-
ment in Human-Robot interaction

• Combination of the above into a cohesive system
A holistic evaluation is still pending due to the current impracti-

cality of in-person tests1.

2 SYSTEM DESCRIPTION
The presented system uses the Scéalability storytelling framework
[40] in combination with two neural networks: one to recognize
hand shapes and another to recognize facial expressions in live
images of a human user. After first recapping the relevant previous
work, we shall explain how the neural models have been incorpo-
rated into the system to permit dynamic interaction with a user,
who is presented with the setup shown in Fig. 1. In Fig. 1 two photo-
graphic recordings are depicted, both of which show the two robots
standing left and right in front of a screen. The screen shows the
user with its joints being tracked by a webcam. The image to the left
depicts the start of performance with descriptions of the individual
devices. The image to the right shows the user on the screen during
an interaction where a "thumbs up" and a smile has been tracked
by the system. At the start of a performance, the actors (two Nao
robots) are introduced in character, by a smart speaker (Amazon
Echo, with Alexa2). The story-generating system generates a plot
and furnishes it with stage directions, narrative and dialogue, and
sets up several decision points at which the user may influence
the outcome via gestures and facial expressions. Consequently, the
robots use their own gestures, spatial movement and speech to act
out their parts. For a demonstration of the system in action, readers
can watch this online video3. The following sections describe all
parts of the setup in detail, outline which elements are novel, and
explain the research upon which they are built.

2.1 Storytelling Framework
Our storytelling system builds on an existing framework, called
Scéalability [40], that turns plots into performances by pairing the
Scéalextric story generator [30, 32] with embodied agents that en-
act a story using space, gesture and dialogue. The framework has
been used to evaluate the effectiveness of different embodiment
strategies. In [40], the audience is shown to be sensitive to the
coherent use of space in embodied story-telling, where on-stage
movements mirror the semantics of plot actions (as opposed to
being chosen at random). Although relative spatial movement be-
tween actors is more subtle than showy pantomime gestures (as
when one robot goes down on one knee to propose), audiences
appreciate the former just as much as the latter. The Scéalextric
story-generator furnishes not only the plot and the dialogue, but
also chooses apt characters from a large database of famous figures,
real and imaginary, called the NOC list [31].

Notably, Scéalextric is pairing figures with respect to character
traits and uses well-known tropes, literary stereotypes and a spark
of randomness to craft the stories. Due to the vast space of combi-
nations and randomness, some stories can include gender, ethnic or

1It was not possible to conduct any in-person research during the COVID-19 pandemic
and alternative evaluation strategies are not feasible given the system’s setup.
2We include Alexa to show that the system can also incorporate non-embodied agents
3https://youtu.be/xeBgaaOYJXQ
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cultural stereotypes. It is a common problem for data-driven story
generation systems to learn an inherent bias from the data, which
can be addressed with tools such as counterfactual data augmenta-
tion [18]. Fortunately, Scéalextric is a symbolic AI system, which
allows us to track down these stories and label them in order to
mitigate bias in the generated content and identify the underlying
structures within the database that gives rise to them. Adding mech-
anisms to our system that identify and reduce undesired biases in
the generated stories is important future work.

Two Nao robots embody the main characters of the story, while
an Echo device narrates the plot. The novelty of the current setup
resides in the interaction of story events. Every story can be re-
garded as a thread of actions. When a decisive action is reached,
one in which a character needs to make a decision, the robot will
pause, turn towards the audience and ask for a sign as to what it
should decide. While the robot speaks directly to the audience, a
user can provide a thumbs up or thumbs down (just like Emperor
Commodus), with a corresponding facial expression. Users need
not react at all, but if they do, their inputs decide the robot’s next
action and the plot is regenerated from that point. The evaluation
of user responses is explained in Section 2.5.

The underlying Scéalextric system has been adapted so that it
can account for whatever decision the user makes. If the decision is
in-line with the previously generated plot, the narrative continues
as planned. If it is different, Scéalextric suggests a detour that sets
the story on a different path. As shown in [33], each story is mostly
self-correcting. When user decisions force a detour, the plot still
rejoins its original narrative arc before the conclusion is reached.

2.2 Robotic Enactment
This focus on gestures (by actors and users) and on-stage move-
ments (by actors) allows us to incorporate aspects of cognitive-
linguistic theory into the system. This is a small but novel applica-
tion of theory to what is otherwise a practical AI system.

2.2.1 Spatial/Schematic Movement. A common language for inter-
action between two or more embodied systems is not necessarily
a spoken one. Rather, embodied agents can make use of recurring
structures, called image schemas [15], that are shaped by bodily
experience of a shared environment [19]. For example, our expe-
rience of gravity makes vertical orientation, of something being
"up" or "down," a salient basis for human metaphors and thus for
machine sensors too. Evidence for these schemas are pervasive in
natural language, and provide a combinatorial basis for defining a
computational semantics [3, 14, 17]. Moreover, this spatial frame-
work supports a practical formalism for robotic movement [4, 28].
Image schemas are not abstract, since they are grounded in physical
experience, but they are generic, and underpin creative tasks such
as conceptual blending [13] and storytelling [39], and provide a
conceptual basis for human gestures [8, 20]. Using robots that use
both spatial movements and gestures to accentuate meaning, [40]
show how certain on-stage actions can concisely summarize the
cumulative state the narrative. For instance, in a tale that brings two
characters closer together emotionally, the robots will move physi-
cally closer over time [41]. In this way, their relative position at any
one time sums up the story so far, This universal metaphor helps

to explain why audiences appreciate these movements as much as
pantomimic gestures which are transitory and non-cumulative.

The robot actors in [41] do not exploit the vertical dimension,
either literally or metaphorically. However, this dimension is also
grounded in cognitive image schemas, and we exploit it here to
support language-free human intervention into a story.

2.2.2 Other modalities. Besides moving back and forth on stage,
the robots also perform pantomimic movements (bowing, waving,
kneeling, pointing, etc.), speak their lines via a speech synthesizer,
and coordinate their actions with the Echo device that narrates the
action. Specifically, we use bipedal anthropomorphic Nao robots
from Softbank Robotics with 25 degrees of freedom, four micro-
phones, two HD cameras and a variety of sensors for detecting
pressure, inertia and infrared light [11]. The pantomimic move-
ments that punctuate the events of the story are adopted from
[37, 38], who explain how more than 400 story verbs are mapped
onto a corresponding number of gestures via a simple probabilistic
model. The validity of this mapping has been demonstrated through
empirical evaluation of robotic story performances [40].

The Amazon Echo device that narrates the story has been chosen
for its clear audio output. It has been used in combination with Nao
robots for related creative tasks [35] and is easily integrated via
Scéalability. Since the Nao’s speech synthesis falls short of Alexa’s,
Google’sWaveNet is used for Text-To-Speech synthesis in real-time
[22]. Scéalability provides information about the gender of each
character, and this is used to inflect the spoken output accordingly.

2.3 Hand Shape Recognition
Our system tracks the user’s pose in real time using the OpenPose
framework for Python [7]4, which provides 135 keypoints on single
images of multiple joint positions (torso, head, legs, arms, hands
and face). The keypoints of the hands [27] are the inputs to a neural
network that is trained to classify different hand shapes5. The
model classifies nine different hand shapes (with an accuracy of
96%), of which we seek only the thumbs up and down gestures.
Although gestures are culturally dependent, the thumbs up gesture
is commonly understood as "good" or "positive" across cultures [26].
Figure 2 shows how OpenPose provides a colored skeleton of the
limbs, head and fingers, even when parts of the arm are occluded.
The hand shape model classifies the finger and displays the label
on screen ("Thumbs up" in the example).

Whenever a thumbs up or down is detected in the camera-input,
a marker is recorded for the next decision point in the storytelling
process. The lack of a hand signal is deemed a neutral response.
The blackboard architecture of the Scéalability framework, which
allows backstage coordination between the robot actors and the
Echo device, also allows the cameras and classifiers to be integrated
into the system as yet another information source for storytelling.

2.4 Facial Expression Recognition
An additional sentiment accompanying the hand shape is provided
by facial expression, so that an angry thumbs up carries a different
meaning than a surprised one. We use the Python package FER6 for
4https://github.com/CMU-Perceptual-Computing-Lab/openpose
5https://github.com/Fasko/Hand-Gesture-Recognition
6https://github.com/justinshenk/fer
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Facial Expression Recognition [10]. This identifies faces with the
MTCNN face detector [43] and uses a convolutional network to
classify expressions [2] by emotion, whetherAngry, Happy, Sad, Sur-
prise, Fear, Disgust orNeutral. Arriaga, Plöger and Valdenegro (2017)
report human-level performance for their network architecture.

Figure 2 shows the boundary box for the face of emperor Com-
modus, as drawn by the MTCNN face detector, while FER displays
percentages for the most salient emotions. We set a confidence
threshold of 80% in order to reliably identify the most salient ex-
pressions for audience feedback: Angry, Happy and Surprise. These
three prove to be the most robust classes in our setup. We then
combine this information with classified hand shapes to derive a
meaningful signal from the user to guide the story.

2.5 Signal Evaluation and Enactment
The detected hand signals (thumbs up, thumbs down, no hand) and
facial expressions (happy, angry, surprise and neutral) can com-
bined to twelve (3x4) combinations such as "enthusiastic thumbs
up" when a thumbs up and a happy smile is detected. The robot
re-articulates the combination that it detects and alters the plot if a
narrative detour is necessitated. For example, the robot in the linked
video asks "Should I give my heart to this person or not?" When the
user provides a thumbs up and smiles, this is interpreted as an
enthusiastic thumbs up, and the narrative is adapted accordingly.
Each gesture is interpreted in the context of the robot’s specific
request, so a thumbs down in response to the question “Should I
turn down this offer” is interpreted as a yes (turn it down), while a
thumbs up to the suggestion of a marriage proposal is also under-
stand as a yes (do propose). A knowledge-base connects signals and
event actions to appropriate decisions. Examples of decisive actions
and the signal valences (summed for hands and face) that motivate
them are provided in Table 1 for responses to robot questions of
the form "Shall I ...". If the robot asks "Shall I lay a trap for ... ", a
frown is not necessarily negative, but can express Schadenfreude
about the deed. Likewise,the thumbs down has a positive valence
for the question "Shall I kill ... " since it puts the user in the same
position as emperor Commodus. Given this context-specificity, the
signal-interpretation matrix requires fine-tuning and evaluation
through additional studies and experiments.

3 FUTUREWORK
Upon the resumption of in-person experimentation, an empirical
evaluation will be conducted to provide a perspective on the per-
ception of the system. We plan to have users interact with the
system in three versions: First, the system will ask the audience for
feedback, but their response will not affect the story (interaction
without influence). Second, the system will ask the audience for
verbal-only feedback (yes-no interaction). Third, the system would
work as described in this paper. We plan to adopt the methodology
presented in [40]. Our three conditions will allow us to tease apart
the effect of the interaction itself and the effects of the non-verbal
interaction. Additionally, we plan to use the results from this study
to fine-tune our signal encoding (Table 1).

Considering the issues about inappropriate bias in generated sto-
ries, we work towards implementing mechanisms in the proposed

Should I ...
fall in love with 0.0 +0.9 -0.9 +0.4 -0.4 -0.3 0.0
propose to 0.0 +0.9 -0.9 +0.4 -0.4 0.0 0.0
lay a trap for 0.0 +0.9 -0.9 +0.4 0.0 -0.4 0.0
rise against 0.0 +0.9 -0.9 +0.4 +0.4 -0.4 0.0
rebel against 0.0 +0.9 -0.9 +0.4 +0.4 -0.4 0.0
stand up to 0.0 +0.9 -0.9 +0.4 +0.4 -0.4 0.0
turn against 0.0 -0.9 +0.9 +0.4 -0.4 -0.5 0.0
... ... ... ... ... ... ... ...

Table 1: Signal encoding examples of hand gestures and fa-
cial expressions for decisive questions during storytelling.

system to identify and prevent generating storylines that can be
perceived as offensive, such as corpus-level constraints [44].

4 CONCLUSION
This short, late-breaking paper sketches the architecture of a inter-
active robotic storytelling system that integrates non-verbal cues
from both the performers (robots) and the audience (human users).
Our focus is on the naturalness of these cues, which are grounded
in pantomime (iconic actions that are the gestural equivalent of
idioms and cliches) and spatial metaphor (in particular, schematic
movement that has an emotional interpretation). An evaluation of
the relative merits of pantomime and metaphor for robot perfor-
mance has already been conducted, and reported in summary here;
subsequent evaluations of the effectiveness of physical feedback
from the audience are next on our agenda.

The use of plot-driven gestures and spatial movements have
already been evaluated and shown to be appreciated by audiences
[40], while the usefulness of gestural inputs and facial expressions
for HRI have also been evaluated elsewhere [9, 12, 23].

The novelty of this approach to HRI lies in its heterogeneous
combination of cognitive linguistic models of space, symbolic AI
approaches to story generation, robotic models of performance,
and neural network models of visual signal detection. This combi-
nation is expedient but far from shallow, since each element must
ultimately connect at the plot level [32]. Gestures and movements
and user signals must all integrate with an explicit sense of what is
happening in the tale, which the system represents at both a surface
text level (narration and dialogue) and a deep semantic level.

In an important sense, then, the system benefits from its hetero-
geneity. Although neural language models generate fluent textual
narratives [6, 24], the plot-driven use of space and gesture necessi-
tates access to the symbolic deep-structures of the narrative that
are not apparent at the surface level. The authors eagerly await the
resumption of social interaction and in-person experimentation to
further evaluate and improve this assemblage through feedback
from the end-users and the HRI community more generally.
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