
Appointment in Samarra:

Pre-destination and Bi-camerality in Lightweight Story-Telling Systems

Tony Veale
School of Computer Science and Informatics

University College Dublin, Belfield D4, Ireland.
Tony.Veale@UCD.ie

Abstract

Stories are most able to sweep us up and carry us along
when we design them to be journeys of the mind. This
paper presents a unification of two journey-based story
generation models, the character-development model of
The Flux Capacitor and the plot development model of
Scéalextric. This union of complementary approaches
allows us to build stories with shape and directionality.
Moreover, since it facilitates the generation of coherent
stories by the most minimal of computing architectures,
the memory-less state machine, this joint model proves
to be ideally suited to the generation of stories by bots.
To squeeze a full story-generator into the context-free
grammars of Tracery, we give a practical form to two
exotic ideas: predestination, and bicamerality of mind.

 Journey into Mystery
Every story is a journey we willingly undertake, especially
when in the company of relatable characters and an adroit
guide. Most are forays into the unknown, as only an author
can lead the way to our final destinations. Our stories lay
down these paths to other lives by instantiating a metaphor
schema Lakoff and Johnson (1980) call Life is a Journey,
and what Yorke (2013) calls – using another metaphor that
shapes many a tale – a journey into the woods. Campbell
(1949) saw this journey as the monomythic basis of most
heroic tales: when heeding the call to adventure, heroes
must leave behind the world of the familiar to meet new
challenges in strange new lands. Only when they have been
changed by their experiences can heroes ever return home,
to find themselves and their old lives utterly transformed.
 We have good reason for talking of the twists and turns
of a thrilling tale, for twisty tales arise from journeys along
twisted tracks. Authors sometimes propel their characters
along paths with unexpected destinations, for reasons that
only become clear at the very end of a journey. Consider
this tiny gem from the master of the short story, Somerset
Maugham (1933). The entirety of the tale is given below:

 “The speaker is Death.

 There was a merchant in Baghdad who sent his

servant to market to buy provisions and in a little
while the servant came back, white and trembling, and
said, Master, just now when I was in the marketplace I
was jostled by a woman in the crowd and when I
turned I saw it was Death that jostled me. She looked
at me and made a threatening gesture. Now, lend me
your horse, and I will ride away from this city and
avoid my fate. I will go to Samarra and there Death
will not find me. The merchant lent him his horse, and
the servant mounted it, and he dug his spurs in its
flanks and as fast as the horse could gallop he went.
Then the merchant went down to the marketplace and
he saw me standing in the crowd and he came to me
and said, Why did you make a threatening gesture to
my servant when you saw him this morning? That was
not a threatening gesture, I said, it was only a start of
surprise. I was astonished to see him in Baghdad, for I
had an appointment with him tonight in Samarra.”

As Scrooge tells us in A Christmas Carol, “Men's courses
will foreshadow certain ends ... but if courses be departed
from, the ends will change.” Tales of predestination, such
as Maugham’s, subvert this logic with characters who rush
headlong toward the inevitable as they run from their fates.
In truth, all fictional characters are subject to the forces of
predestination; what differs from tale to tale is the extent to
which authors reveal the shape of the tracks on which their
characters are forced to run, and whether or not characters
have any self-knowledge of those tracks. Automated story-
tellers are no less natural then in their use of rigid plotting
and goal-driven planning than their human counterparts. In
this paper we argue it makes sound computational sense to
explicitly model this notion of character predestination. We
will show how predestination can simplify the construction
of dense narrative spaces to a point where coherent stories
can be generated with the simplest context-free grammars.
 Our goals here are more practical than empirical: we aim
to simplify the mechanics of story-telling to a level where
complex stories can be woven by a minimal state machine
with no memory and no global executive. To this end we
rehabilitate another somewhat exotic idea, Jayne’s (1976)
theory linking consciousness to the bicamerality of mind.

For Jayne, the flow of data between the hemispheres of the
brain is an interior dialogue that only becomes an internal
monologue when beings become conscious enough to take
full ownership of both sides of the conversation. We do not
set out here to tackle the grand challenge of consciousness,
for as Jayne notes, it is not at all clear that consciousness is
even needed for creativity. Yet Computer Science makes
many bicameral divisions that are usefully blurred by AI,
such as the line between code and data that is erased by the
LISP and PROLOG languages, and we will show here how
simple generative systems can weave stories by sustaining
a back-and-forth dialogue between simpler bicameral parts.
 We unite these strands in the following sections, starting
with a discussion of related work and ideas in the next. Our
purpose is to unify two complementary approaches to story
creation that focus, respectively, on character development
and plotting: the Flux Capacitor of Veale (2014) and the
Scéalextric model of Veale (2017). We show here that the
unification of both permits the construction of dense story
spaces in which characters may wander, not idly or blindly,
but with a sense of purpose and narrative momentum. As
labeled directed graphs, these spaces are easily transformed
into lightweight Tracery grammars (Compton et al., 2015),
which can then be used to specify generative Twitterbots.
The advantages of the context-free Tracery formalism out-
weigh its expressive limitations, and we show here how the
idea of predestination proves to be a practical workaround
to the need for long or short-term memory. To also obviate
the need for top-down planning in story telling, we show
how Jayne’s bicameral divide finds a practical counterpart
in the two-grammar approach to bot definition of George
Buckenham’s CheapBotsDoneQuick.com, a web platform
that hosts Twitterbots specified as Tracery grammars. So
we model story generation as a two-level process in which
we first build generators of story spaces, and then specify
context-free explorers of these spaces to generate novel
stories as they race to their own appointments in Samarra.

Related Work and Ideas
The journey schema is so conducive to story-generation by
a machine not just because it offers a productive metaphor
for narratives; it is also a productive metaphor for AI itself,
or at least AI in the classic search-oriented mold. Just as a
hero searches for resolution on some Campbellian quest, or
roams the narrative thicket of Yorke’s woods, AI problem
solvers purposefully explore a state-space of possibilities,
backtracking here and advancing there, until a predefined
objective is reached. Creative systems are free to alter their
objective functions – their sense of value – as they wander,
just as they might transform the space itself. In either case,
the need for search persists. For a story-telling AI the space
is a graph of branching narrative possibilities, and the story
is a function of the path taken by the teller to its goal state.
This story-path can be given an a priori rationale post-hoc,
to justify the actions of a hero in terms of their end state, as
though the hero planned the actions to reach that very state.
Or this rationale can be specified a priori, so that a planner
can then seek the most dramatic path to making it a reality.

Riedl & Young (2010) thus use an explicit planner to give
their heroes issues to resolve and the plans to resolve them,
yet most story-generation AI systems, from Meehan (1981)
and Turner (1994) to Pérez y Pérez & Sharples (2004) to
Riedl and Young (2010) to Gervás (2013) and Gervás et al.
(2016) string together causes and effects to construct plots
that seem to imbue characters with plan-like intentionality.
 We read intentionality into the way a character interacts
with others. If A assists B to reach C then reaching C may
have been A’s goal all along. The bric a brac of a story are
its ancillary figures, obstacles, signs, magic talismans, its
helpers and hindrances on the road to its final destination.
In exploiting the affordances of these narrative morphemes
– what Propp (1928) calls the morphology of the tale – a
hero exhibits relatable drives and intentions. Propp applied
his morphological analysis to Russian folktales, but authors
such as Gervás et al. (2016) have applied his inventory of
character types and functions to the generation of more
modern narratives. Others focus on specific elements of the
Proppian scheme. Veale (2014) sees the transformational
role of stories – how they turn characters of type A into
heroes or villains of type B – as the most fascinating aspect
of story generation. Propp applied the label transfiguration
to the transformation of a hero in a story, whilst Campbell
dedicated several key stages of his hero’s journey to the
change, from the call to adventure and the crossing of the
threshold to the midway ordeal and near-end resurrection.
 Veale (2014) defined a Campbellesque annotation for
use in the Flux Capacitor to label the actions we typically
associate with people from different categories, from artists
and scientists to priests and criminals. Every category can
be viewed as a journey, with the call to adventure serving
as its entry point, and the ordeal (after a trip to the inmost
cave) serving as its point of egress. Actions of the first kind
are annotated as level 0 when they initiate a person into a
category; for instance, studying medicine is a level 0 action
for doctors whilst renouncing religion is a level 0 action for
atheists. Actions of the second kind are annotated as level
9 if they result in an erstwhile member breaking fully with
a category; finding religion is a level 9 action for atheists,
whilst losing religion is a level 9 action for believers. The
labels 1 to 8 are reserved for actions that link the extremes,
with 5 representing the high-water mark of a category, the
point at which a person is fully operational as a member;
for example, the act of evangelizing as a believer, treating
illness as a doctor or spreading doubt as an atheist. Actions
labeled with a 2, 3, 4 or 5 mark the growth of a character,
while a 6, 7 or 8 document the character’s gradual move to
the exit. The Flux Capacitor generates its plots by linking
an exit from one category with an entry into another, and
pairs its categories so as to maximize affective dissonance.
So, in this way, atheists become believers, heroes become
tyrants, sinners become saints, billionaires become bums
and cops turn into the crooks they most despise. As such,
Flux Capacitor generates capsule tales with an ironic
shape, mere plot outlines rather than fleshed-out narratives.
 The Scéalextric model of Veale (2017) focuses more on
the bread-and-butter issues of plot design: given an action

V by character A toward character B, with what action is B
likely to respond? Given a suitable response V’, a system
can now determine how A might respond with V’’, and so
on, until a terminating action V* is performed by A or B. A
causal graph of actions and reactions was first constructed
by looking for pairs of annotated actions in Flux Capacitor
with sequential labels, such as 0,1 or 6,7, and by linking
these actions into a labeled directed graph. When the first
action’s label is in {0…5} and the second’s is in {6…9}
then the connecting arc is labeled “but” in the causal graph;
it is labeled “then” in all other cases. This initial graph is
manually edited to transform many “then” labels into “so”
labels when the connection is a strongly causal one. At this
stage additional arcs are also added to create a dense story
graph in which 820 different action “verbs” are interlinked.
To generate a story, a generator picks a verb at random and
initiates a random walk in the forest of causal connections.
For every action in the graph, a piece of text is defined to
serve as a scene-setter for a story opening with that action.
A short text is likewise defined for every action to serve as
a moral summation should a story terminate at that action.
Also associated with each action is a set of one or more
idiomatic templates, to allow each to be rendered in fluent
natural language. Any random walk in the causal graph can
thus be framed as a complete narrative, with a motivating
introduction and a summarizing conclusion bookending a
locally-coherent journey along causally-connected actions.
 When plotting is reduced to a random walk in the causal
woods, characterization fulfills an ever more vital function.
Characters may follow a plot as it winds through the graph,
but readers will only follow those characters if they seem
to know what they are doing. To achieve an integration of
character and plot, a system must either choose its actions
to suit a character, or it must at least render those actions to
reflect what readers already know about the characters. The
experiments of Veale & Valitutti (2017) evaluate the latter.
Using Scéalextric to generate a range of plots, they render
the plots as textual narratives using two alternate strategies.
In the first, character labels are chosen at random from a
pool of stock animals, such as koala, monkey and snake,
and plots are rendered by inserting these labels (e.g. “the
koala”) into the slots in Scéalextric’s idiomatic templates.
In the second, familiar characters are plucked from a large
inventory of famous faces, fictional and historical, called
the NOC list (Veale, 2015). This knowledge-base describes
its characters in generous detail, providing for each a list of
positive and negative qualities, a set of categories, a list of
domains, typical activities, weapons, vehicles and clothing,
known opponents and mates, political leanings, and so on.
Characters are chosen at random, but in pairs, for each tale,
so that the protagonist and antagonist are well-matched and
perhaps thematically-related too. Steve Jobs might thus be
paired with Leonardo Da Vinci or Bill Gates. When actions
involving NOC characters are rendered, the system tries to
shoehorn specific knowledge from their NOC entries into
the text; for example, if A attacks B, the weapon of choice
for A is used; when B flees from A, the vehicle of choice
for B is used, as is an associated location to hide in.

 Evaluating the outputs of each strategy on 6 dimensions
– laughter, entertainment, imagination, vividness, drama
and silliness – using the crowd-sourcing site CrowdFlower,
Veale & Valitutti reported significant improvements for all
dimensions when plots are rendered with NOC characters
as opposed to generic animals. Strikingly, this applies just
as much to drama – the dimension that is, most obviously,
the product of plot-level decisions – as it does to any other.
In the next section we take the road not followed by Veale
& Valitutti, to explore the other approach to the integration
of characterization and plot: picking (as opposed to merely
rendering) a story’s actions to suit the characters involved.

Lost in Narrative Space
The Flux Capacitor maps actions to the kinds of characters
that perform them, while Scéalextric maps actions to each
other, to yield a narrative model of cause and effect. Since
character influences actions and actions shape character, it
makes sense to unify these complementary approaches. To
put plot at the service of character, we can use Scéalextric
to search for the shortest sequence of actions that produces,
and explains, any change proposed by the Flux Capacitor.
Conversely, to use character to drive plot, we can use the
Flux Capacitor to specify the first and last actions of a plot
and use Scéalextric to trace out the intermediate journey.
 Scéalextric assumes that each of its stories involves just
two principal characters, a protagonist A and antagonist B,
so its various structures and templates have slots to house
the character choices that are ultimately made for A and B.
The Flux Capacitor makes similar assumptions about arity:
categories are associated with actions that comprise a verb
and another category, such as heal:illness and debate:idea.
When the other category denotes a kind of person, the verb
may denote an interpersonal relationship, such as criticize
or debate_with, that is also defined for Scéalextric. In those
cases we can map the categories connected by the verb into
two roles, the protagonist (A) and antagonist (B). Any verb
linking A and B that is annotated with a 0, 1 or 2 can now
be used as the opening action of a story involving A and B,
while a connecting verb annotated with an 8 or a 9 (not
every category has a level 0 verb or a level 9 verb) can be
used as the closing action for the same story. Consider the
example of theorist and critic, which are linked by the
verbs disagree_with (level 1) and denounce (level 8). The
level 0 action for theorist, develop:theory, is not one that
can be exploited by Scéalextric, so we must settle for one
annotated as level 1. Likewise, the denunciation of a critic
does not usher a person out of the theorist category, so this
action is annotated as level 8 rather than level 9. However,
denounce is a verb that is also defined for Scéalextric, so it
makes a suitable destination for any story about a theorist.
Using Scéalextric to trace out a path from disagree_with to
denounce, the following sequence of actions is proposed:

disagree_with → are_debated_by → are_roused_by →
fall_in_love_with → confess_to → are_betrayed_by →

are_arrested_for_killing → denounce

This shows precisely what Scéalextric brings to the union

of both systems that Flux Capacitor cannot provide alone:
its journey through the causal graph pushes the relationship
between theorist and critic into the realm of romance, with
a dark turn into betrayal and retribution. This is just one of
many pathways between disagreement and denunciation in
Scéalextric’s causal graph, and other plots can be derived
from the same start and end points. These can be rendered
with the roles of A and B filled with “the theorist” and “the
critic” respectively, or the NOC can be used to suggest
some appropriate names to attach to these categories, such
as Rush Limbaugh as critic and Charles Darwin as theorist.
 As presented in Veale (2017), all Scéalextric stories start
and end at arbitrary points in the causal graph. The paths
proposed by Flux Capacitor yield more interesting stories
because they reflect the journeys taken by people through
their chosen categories in life. This category-journey gives
each narrative a satisfying shape, and directly instantiates
Lakoff & Johnson’s Life is a Journey schema. Taking its
cues from Flux Capacitor’s annotations, the joint system
generates 12,000 stories that start at a category-entry point
and terminate at the brink of category-departure. We could
generate far more or far less, but this is an ample sample.
We then fold these 12,000 pathways into a single directed
graph S that will serve as our story space. Each vertex V in
S is an action verb that links to the next actions in a story
with arcs labeled so, then or but. Unlike the causal graph
used by Scéalextric, a subset of vertices are marked as start
or end nodes for stories; a well-formed story can start at a
vertex designated start and conclude at one designated end.
Since the original 12,000 stories are merged, any single
vertex leads directly to any of the subsequent actions from
any story that contains it. In this way the graph S gives rise
to story possibilities that are not in the original sample.
 These possibilities include a potential for the story-teller
to get lost in the woods, to wander aimlessly in the graph S
until it finds a vertex, any vertex, designated end. For the
teller to explore S with a sense of purpose, every vertex V
must act as a signpost, not just to the very next vertices but
to the end of the story too, otherwise the shape imposed on
those stories by the Flux Capacitor will have been lost. To
give vertices a sense of predestination, they must encode
not just an action itself, but the final action of the story too.
Here is our theorist:critic plot again, in this new encoding:

disagree_with/denounce → are_debated_by/denounce →
are_roused_by/denounce →fall_in_love_with/denounce →

confess_to/denounce → are_betrayed_by/denounce →
are_arrested_for_killing/denounce → denounce/denounce

When our sample of 12000 stories is folded into S with this
encoding, every vertex V/E in S carries with it a sense of
narrative momentum. A vertex V/E represents the action V
in a tale terminating with the action E, so that V/E can only
be connected to other vertices V1/E, V2/E, …, Vn/E. Thus,
any vertex in a story ending with betrayal can lead only to
other vertices from tales of betrayal. So from the very start
of a story, the teller knows how the tale will end, even if it
does not yet know how that end will ultimately be reached.

Release the Bots
When a story graph S encodes long-distance directionality
into every vertex V/E, an explorer of S no longer needs its
own sense of direction. The territory becomes its own map
and compass, so an explorer need keep no record of where
it has been or where it is going. We can thus turn this map
into a formal device that lacks all memory, such as a finite-
state-machine. Since the graph S already resembles such a
machine, with certain states/vertices marked as permissible
start states and others marked as allowable end states, we
can translate S directly into the corresponding Chomskyan
grammar. Our choice of formalism is Tracery (Compton et
al., 2015), a JSON-based format for context-free grammars
that is widely-used for procedural content generation. The
resulting Tracery grammar can be directly given to CBDQ
(CheapBotsDoneQuick) to create a story-telling Twitterbot.
 A Tracery grammar is a set of rewrite rules in which a
non-terminal on the left-hand side is replaced by a random
choice of expansions from the right-hand-side, as in:

 “color”: [“red”, “blue”, “green”, “orange”, “black”],

An expansion on the right may recursively mention a non-
terminal (in hashes) that is then further expanded, as in:

 “toy”: [“#color# ball”, “#color# bike”, “#color# doll”],

The following Tracery rule is used by a Trump parody bot,
@trumpScuttleBot, to tweet satirical roses are red poems:

 “poem”: [“#red_thing# are red, #blue_thing# are blue,
 my #fan# #affirmation#, and #blue_rhyme#”],

When other non-terminals such as red_thing are defined,
our grammar tweets (via CBDQ) the following short poem:

Plastic roses are red,
Sailors' curses are blue,
my human children will build my wall,
and pray that profits ensue

To generate a Tracery grammar from a story graph S, each
vertex V/E is defined as a non-terminal with one expansion
string for each adjacent next vertex in S. Each expansion
string contains an idiomatic rendering (via Scéalextric) for
its action verb, followed by a non-terminal reference to the
set of possible next vertices on the path to a valid endpoint.
The exception to this norm is the expansion string for any
vertex of the form E/E, such as denounce/denounce: since
this form indicates the last action in a story, the expansion
contains the text “The End” in place of a non-terminal. The
set of all vertices in S that can launch a story are gathered
together as expansions for a single rule called “origin”, the
label Tracery reserves for the master rule of any grammar.
 Since Tracery rules have no memory of prior expansions
they cannot carry forward any context – such as names for
the characters A and B – from one rule to the next. As a
workaround, we can encode in the expansion of each V/E
vertex the pair of categories that inspired a path through
that vertex in S. In the following tweet these categories
have been wrapped in quotes, and alternate across actions:

A ‘master’ was resented by a ‘rival’ and our 'master'
overshadowed this 'rival' so our 'trailblazer' was copied
by this 'imitator' but our 'tempter' misled this 'sinner' so
our 'abbess' was dismissed by this 'bishop so our
'victimizer' begged forgiveness from this 'victim'

The quotes identify the categories as likely metaphors, yet
no matter how relevant they may seem for specific actions,
most metaphors are ambiguous and readers are easily dis-
oriented as to who is who in this story. Is the victim that
ends the tale the master that begins it, or is this victim the
rival? To avoid confusion and foster narrative momentum,
each action should be rendered with the same pair of
characters. Yet since each is rendered independently of all
others – this is what it means for a grammar to be context-
free – we must rely on the sense of direction that is baked-
in to each state and non-terminal. Predestination provides
the answer: we associate a unique pair of characters (A &
B) with each action E that can terminate a story with a
vertex E/E. In our sample of 12,000 stories there are 220
distinct verbs that fit the bill, allowing 220 character pairs
to be used by the grammar. Given the large inventory of
name pairs that is harvested from the NOC list – we collect
the first names of characters and their enemies or mates,
such as Woody & Mia and Sam & Diane – we randomly
assign these to the 220 termination actions. Suppose
Woody & Mia is mapped to beg_forgiveness_from; all
stories that end with this verb, and every action within
those stories, will be rendered with A=Woody and B=Mia.
In effect then, Woody is always destined to beg Mia for
forgiveness, no matter how a story about them may begin.
 While the number of terminating verbs is large, a reader
may soon recognize the inevitability of tales with specific
characters ending in foretold ways, so that e.g. Sam always
marries Diane or Hillary always kills Bill. However, it is a
simple matter to regularly regenerate S (once a week, say)
and to randomly reassign characters to terminating verbs.
Like the actors in a travelling repertory company, who may
switch roles from one town or one production to another,
the characters in our tales trade destinies with each other.
When the new grammar that results from a new S is given
to CBDQ, the bot’s tales are given a new lease of life too.

Bicameral Bots
Our story above about a master and a rival barely squeaks
under Twitter’s newly enlarged 280-character tweet limit.
To give a story room to breathe, a bot should ideally parcel
it into an array of small episodes – say, one action apiece–
and emit it as a threaded sequence of individual tweets, the
way humans tend to use Twitter for fiction. But this kind of
dismemberment would require planning and a global view
of the story, and if a Tracery grammar lacks the memory to
pass context between non-terminals, it certainly lacks the
ability to pass control from one tweet to the next. However,
CBDQ makes an interesting bicameral distinction in its use
of grammars that offers bot-builders a nonobvious solution.
 Twitter is more than a broadcast medium for the sharing
of opinionated content; it is also a platform for interaction

in which people relate to each other by replying to, and by
commenting upon, each other’s tweets. Our bots, likewise,
are more than deaf generators. We often build these bots to
respond to the provocations of others as much as to deliver
automated provocations of their own. Buckenham’s CBDQ
thus allows two grammars to be specified for a Twitterbot:
a core Tracery grammar, which, as we have seen, generates
a bot’s outputs on an agreed schedule, free of all influence
from the outside world; and a simpler response grammar
that allows a bot to reply directly to any mentions of its @
handle in the tweets of others. While also expressed in a
JSON format, this second grammar is a not a fully-fledged
piece of Tracery. Rather, it amounts to an ordered list of
stimulus:response pairs: the stimulus is a literal string that
any @ mention must contain before the response – a single
Tracery expansion string, which may refer to non-terminals
in the core Tracery grammar – is used to generate a reply.
Suppose, for instance, that we want our Trump parody bot
to produce poetry on demand. In response to a color from a
user, the bot generates a poem around that color. Consider:

“[g|G]old”: “#red_thing# are red, #gold_thing# are gold,
 my #fan# #affirmation#, and #gold_rhyme#”,

This response rule ensures that tweets to @trumpScuttleBot
containing ‘gold’ or ‘Gold’ receive a response such as this:

Self-inflicted wounds are red,
Goldfinger’s ladies are gold,
my local milk people are TREMENDOUS,
and are my special interests (I'm Sold!)

The bicameral parts of a bot can talk to each other in ways
that are both simple and roundabout. An incoming tweet is
matched to a stimulus in the response grammar, which then
talks to the core grammar by invoking its non-terminals in
the construction of its response. But the core grammar can
only talk to the response grammar if it addresses its tweets
to itself, by appending a mention of its own Twitter handle.
Such mentions bring the outputs of the core grammar to the
attention of the response grammar, which can then respond
in kind, perhaps also appending a self-reference to ensure
that the conversation between bicameral halves continues.
While this conversation is carried on between its grammars
the bot is basically, but quite productively, talking to itself.
 The job of an automated story-teller is to spin a tale by
talking to itself. To exploit CBDQ’s basic bicamerality, we
partition and reshape the story-telling grammar as follows.
The core grammar again has a non-terminal/rule for every
state V/E or E/E in the story graph S, but each right-hand-
side expansion no longer contains recursive non-terminals.
Instead, each expansion ends with the bot’s Twitter handle.
The main rule, origin, is responsible for generating just the
first tweet of the story, a single action with a title, as in:

The 'Nanny' & The 'Child'
The story of how Lois supervised Kal's every effort
@BestOfBotWorlds

The trailing self-reference is later picked up by the bot’s
response grammar, as CBDQ is attuned to mentions of its
bots (even by themselves) on Twitter. The tweet identifies
the action verb supervise but does not explicitly identify
the state in S, supervise/are_arrested_for_killing, to which
it fully corresponds here. However, recall that the choice of
characters Lois and Kal is a function of the very last action,
so from their presence in this tweet the response grammar
can recover this latent state in S. Here is the response rule:

 “Lois supervised Kal”: “#a# #supervise/arrest_f_kill#”,

The non-terminal a is a shorthand that expands to the bot’s
own Twitter handle, which will prepend any bot response.
The non-terminal supervise/arrest_f_kill is also defined in
the core Tracery grammar, with a rule that ties together all
the narrative consequences for the corresponding state in S.
This would be laborious work if the grammars were hand-
generated, as is the case for most Tracery/CBDQ bots, but
these grammars are machine-generated. The tale continues
and ends with the following self-addressed tweets:

 @BestOfBotWorlds But Lois knowingly told lies for Kal

 @BestOfBotWorlds Then Kal threatened to expose
Lois's darkest secrets

 @BestOfBotWorlds But Lois made a heartful
appeal to Kal

 @BestOfBotWorlds But Kal's insults struck Lois
 like poisoned darts

 @BestOfBotWorlds And the police arrested Lois
for her brutal attack on Kal

 The End.

A trailing The End is provided by the rule for the end-state
are_arrested_for_killing/are_arrested_for_killing, an end
to which the response grammar knowingly does not reply.

The Blackboard Jungle
The generative grammar of a Tracery/CBDQ bot can only
talk to itself by using Twitter as an intermediary, for only
by posting tweets into its own public timeline can it pass
those messages to the response part of its bot persona. This
bicameral conversation uses Twitter as a blackboard onto
which the bot reads and writes its data (Hayes-Roth, 1985;
Veale & Cunningham, 1991). But Twitter is a very public
blackboard, as well-suited to cooperation between relative
strangers as it is between different parts of the same bot. A
bot may thus delegate tasks or provide inspiration to others
by sharing and appropriately addressing its ideas in public.
 Consider a CBDQ bot, named @MovieDreamBot, which
scours the category hierarchy of DBpedia.org to find ideas
for its tweets. The bot targets fictional categories of films
and books, exploiting the linguistic form of each to extract
the key ideas underpinning a specific work. For example,
Blade Runner (1982) is listed with the following categories

at dbpedia.org/page/Blade_Runner: flying_cars_in_fiction,
climate_change_in_fiction, films_about_altered_memories
and genetic_engineering_in_fiction. If we now strip away
the syntactic sugar, we are left with the themes altered
memories, genetic engineering, climate change and flying
cars. The bot chooses two themes to package into every
tweet, of which the following is a representative example:

Influenced by the film ‘Blade Runner,‘ I dreamt of
amnesiacs who lose altered memories and drive
flying cars, @MovieDreamBot.

The bot combines fictional themes from DBpedia.org with
propositional content from Flux Capacitor, to reason that
even flying cars need chauffeurs, just as the memories that
are lost by amnesiacs may have been altered in some way.
Note how the bot addresses itself with an @ self-reference;
this allows its response grammar to engage with each tweet
and add some further creative value in the process. In this
case the response grammar is designed to use a theme from
the tweet as the basis for an automated story. Keying off of
the term amnesiacs, the response grammar responds with:

Hey @BestOfBotWorlds, spin us a yarn about how
our amnesiac remembered this particular friend.

So the response grammar does not pass the ball back to its
generative partner, but passes it onward to another bot, our
story-telling CBDQ bot @BestOfBotWorlds. As it does so
it shifts the emphasis from amnesiac to the Scéalextric verb
remember, allowing the story-teller to reply with this tale:

 The 'Freedom Fighter' & The 'Martyr'
 The story of how Rick held on to memories of Ilsa
 @BestOfBotWorlds

 @BestOfBotWorlds And Ilsa filled Rick with inspiration

 @BestOfBotWorlds So Rick heard wedding bells
when looking at Ilsa

 @BestOfBotWorlds But Rick made Ilsa sick to
her stomach

 @BestOfBotWorlds So Ilsa kicked Rick out into the cold

 @BestOfBotWorlds So Rick whispered rumours
behind Ilsa's back

 @BestOfBotWorlds Then Rick hurled cruel taunts at Ilsa

 @BestOfBotWorlds Then Ilsa rose up against Rick

 @BestOfBotWorlds Then Ilsa toppled Rick from the top
 of the heap

 @BestOfBotWorlds Yet Rick became a shining
 inspiration for Ilsa

 @BestOfBotWorlds But Rick crucially underestimated
Ilsa

 @BestOfBotWorlds And Ilsa knew just how to
manipulate Rick

 @BestOfBotWorlds So Rick caught a bullet to save Ilsa
 The End.

We humans throw ideas about on social media as though
they were balls to be volleyed with great force and sliced
with spin, and our bots should be able to do the same. For a
story emerges from several distinct layers of interaction:
the interplay of words and ideas, the interplay of teller and
audience, and the interplay of fictional characters. Our bots
and their grammars can interject themselves into each kind
of interaction, to collectively create the Twitter equivalent
of what Minsky (1986) called the society of mind. For even
if each mindlessly executes a tiny task of its own, our bots
can cumulatively give rise to surprisingly creative results.

West of Eden
Predestination is a recurring fictional trope that is found in
movies, novels, TV shows and games. By comparison, the
bicamerality of mind has remained the stuff of esoterica, at
least until now. Westworld, a recent HBO television series,
has put both ideas side-by-side in the popular imagination.
Like the 1973 movie of the same name on which the series
is based, Westworld is set in a Western-styled theme park
where lifelike robotic “hosts” – in the guise of cowboys,
barmaids, lawmen, thieves, farmers and cathouse madams
– entertain paying guests with their highly scripted antics.
Westworld is a technological marvel, overseen by operators
who are as much story-tellers as roboticists or bureaucrats.
Yet no matter how lifelike and conscious a host may seem,
each is predestined to traverse the same narrative “loop” to
reach its appointed fate. While each is given some latitude
for improvisation within its loop, every host is always fated
to be on time for its appointment in Samarra. The hosts are
dancers that collectively glide through a highly-structured
story-space, one that is regularly regenerated and rebooted
with new loops, new fates, and new roles for old hosts.
 In episode 3, season 1, the park’s chief designers discuss
the bicameral basis of the host’s mental architectures. The
younger designer sums up, and dismisses, Jayne’s theory
thusly: “the idea that primitive man believed his thoughts
to be the voice of the gods, but I thought it was debunked,”
to which the older replies “as the theory for understanding
the human mind perhaps, but not as a blueprint for building
an artificial one.” The distinction, so well articulated in this
work of modern fiction, is one that has always been present
in the field of Computational Creativity. Cognitive theories
offer valuable insights into the working of creative systems
but they need not always hold water for human cognition
to be of practical value to the builders of artificial systems.
In many ways the practitioners of CC are guided as much
by stories as by theories. While theories come and go, a
good story always retains its ability to inspire and to guide.
 A subtle philosophical thread that is woven through the
Westworld series is the possibility that the park’s human
operators are no more the possessors of a conscious mind
and a soul than their robotic creations. Some hosts seem to
be more human that their creators, while some guests, and

some creators too, are stuck in loops of their own making.
So to what extent is any CC system stuck in a loop of its
designer’s making, and what capacity does such a system
have to transcend its programming? We all travel in ruts of
society’s making, improvising locally within loops that we
cannot always see. Shouldn’t our CC systems do likewise?
 Our engagement with such themes in this paper has been
largely superficial, focusing as we have on practical issues
in the lightweight design of distributed CC systems. Yet
our treatment of practical issues is still usefully informed
by a consideration of more profound questions. Our model
of automated story-generation aims to reconcile the loops
with the improvisations to yield predestination with choice.
As builders of these CC systems we become meta-tellers;
for we build the story-spaces in which our hosts wander on
unseen tracks, telling stories as they move around in loops.
When a space has exhausted its potential to surprise, we
regenerate it, with new paths and new character destinies.

 Authorship in a Bottle
We have presented a number of new resources in this paper
that are available for download by researchers. Bicameral
grammars for our story-telling bots @MovieDreamBot and
@BestOfBotWorlds, as well as for @TrumpScuttleBot, can
be accessed via links on their Twitter pages or downloaded
from the CC repository github.com/prosecconetwork. Code
and data for the generation of these grammars, as well as
knowledge representations for Scéalextric and the NOC list
are also available from this repository. A forthcoming book
on CC Twitterbots (Veale & Cook, 2018) offers greater
detail on how these resources may be used by bot-builders.

Squeezing a fully functional story-teller into the expressive
confines of a finite-state-machine, or even into the context-
free grammars of Tracery, is the equivalent of squeezing a
seaworthy ship into a bottle. Our focus in this paper has not
been on improving the quality of the stories generated by
Scéalextric or Flux Capacitor, even if we have shown how
these two approaches can be unified to imbue stories with a
greater sense of shape and completeness. Rather, we have
focused on replicating the coherence and richness of stories
from (Veale, 2017; Veale & Valitutti, 2017) with a more
streamlined representation and a much reduced algorithmic
complexity. We have shown how bots can use Twitter as a
blackboard to distribute creative effort, and how we can
squeeze the most from tools such as Tracery & CBDQ by
automating the construction of grammars. The philosopher
Daniel Dennett (2007:95) once remarked that “we have a
soul, but its made of lots of tiny robots.” We have set out
to model nothing so grand as the soul here, except perhaps
the soul of a new story-telling machine, made of tiny bots.

References
Campbell, J. (1949). The Hero with a Thousand Faces. Princeton:
Princeton University Press.
Compton, K., Kybartas, B. & Mateas, M. (2015). Tracery: An

Author-Focused Generative Text Tool. In Proc. of International
Conference on Interactive Digital Storytelling, Denmark:154-161.
Cunningham, P. & Veale, T. (1991). Organizational issues arising
from the integration of the lexicon and concept network in a text
understanding system. In Proc. of the 12th Int. Joint Conference
on Artificial intelligence (IJCAI), Sydney, Australia, 981-986.
Dennett, D.. (2007). My body as a mind of its own. In D. Ross
(Ed.), Distributed cognition and the will: individual volition and
social context. Cambridge, MA: MIT Press.
Gervás, P. (2013). Propp’s Morphology of the Folk Tale as a
Grammar for Generation. In Proceedings of the 2013 Workshop
on Computational Models of Narrative, Dagstuhl, Germany.
Gervás, P., Hervás, R., León, C. & Gale, C.V. (2016).
Annotating Musical Theatre Plots on Narrative Structure and
Emotional Content. In Proc. of the 7th International Workshop on
Computational Models of Narrative, Krakow, Poland.
Hayes-Roth. B. (1985). A blackboard architecture for control.
Artificial Intelligence. 26 (3): 251–321.
Jaynes, J. (1976). The origins of consciousness in the breakdown
of bicameral mind. Middlesex, UK: Penguin books.
McKee, R. (2010). Story: Style, Structure, Substance, and the
Principles of Screenwriting. New York: Harper-Collins.
Meehan, J. (1981). TALE-SPIN. In Shank, R. C. and Riesbeck, C.
K., (eds.), Inside Computer Understanding: Five Programs plus
Miniatures. Hillsdale, NJ: Lawrence Erlbaum.
Minsky, M. (1986). The Society of Mind. Cambridge MA: MIT
Press.
Pérez y Pérez, R. & Sharples, M (2004). Three Computer-Based
Models of Storytelling: BRUTUS, MINSTREL and MEXICA.
Knowledge Based Systems Journal, 17(1):15-29.
Propp, V. (1928/1968). Morphology of the Folktale. University of
Texas Press (2nd edition; English translation by Laurence Scott).
Riedl, M. O. and Young, R. M. (2010). Narrative planning:

balancing plot and character. Journal of Artificial Intelligence
Research 39.1, 217-268.
Schank, R. & Abelson, R. (1977). Scripts, Plans, Goals and
Understanding. Psychology Press: New York, NY.
Turner, S.R. (1994). The Creative Process: A Computer Model
of Storytelling, Hillsdale, NJ: Lawrence Erlbaum.
Veale, T. (2014). Coming Good and Breaking Bad: Generating
Transformative Character Arcs For Use in Compelling Stories. In
Proceedings of ICCC-2014, the 5th International Conference on
Computational Creativity, Ljubljana, Slovenia, June 2014.
Veale, T. (2016a). Round Up The Usual Suspects: Knowledge-
Based Metaphor Generation. In Proceedings of the Meta4NLP
Workshop on Metaphor at NAACL-2016, the annual meeting of
the North American Assoc. for Comp. Ling. San Diego, CA.
Veale, T. (2016b). A Rap on the Knuckles and a Twist in the
Tale: From Tweeting Affective Metaphors to Generating Stories
with a Moral. In Proceedings of the AAAI Spring Symposium on
Ethical and Moral Considerations in Non-Human Agents.
Veale, T. (2017). Déjà Vu All Over Again: On the Creative Value
of Familiar Elements in the Telling of Original Tales. In Proc.
of ICCC 2017, the 8th Int. Conf. on Computational Creativity,
Atlanta, Georgia, June 19-23.
Veale, T. & Valitutti, A. (2017). Tweet dreams are made of this:
Appropriate incongruity in the dreamwork of language. LINGUA
197, 141--153.
Veale, T. & Cook, M. (2018). Twitterbots: Making Machines that
Make Meaning. Cambridge, MA: MIT Press (in press).
Vogler, S. (1984/1998). The Writer's Journey: Mythic Structure
For Writers. Studio City, CA: Michael Wiese Productions (a
book treatment of Vogler’s original 7-page memo from 1984).
Yorke J. (2013). Into the Woods: A Five-Act Journey into Story.
London, UK: Penguin.

