
From Symbolic Caterpillars to Stochastic Butterflies:
Case Studies in Re-Implementing Creative Systems with LLMs

Tony Veale
School of Computer Science
University College Dublin

Dublin, Ireland
tony.veale@UCD.ie

Abstract
Large Language Models (LLMs) are as versatile as they
are ubiquitous. As generators of linguistic content they
are facile, configurable, and endlessly productive, and
they respond well to complex instructions. These qual-
ities make it feasible to replace diverse parts of the pro-
cessing pipeline of a creative system with a single LLM.
We present two case studies on re-implementing largely
symbolic creative systems around a a central LLM. The
first relates to the production of topical comic strips,
and we show how a single LLM can replace a range of
high-maintenance components, from knowledge-bases
to generators, while enhancing robustness and novelty.
The second also concerns the production of humorous
content – jokes – and highlights some areas where sys-
tem builders should still tread lightly when using LLMs.
We distill lessons and insights from our experiences in
each domain, as a guide to those contemplating the re-
engineering of a symbolic system in part or in whole.

Introduction
Recent dramatic improvements in the scaling, training and
performance of Large Language Models (LLMs) make them
viable substitutes for many parts of the generative pipeline
in a creative system. LLMs have been shown to be capable
problem solvers with broad generality (Radford et al. 2019),
to possess strong analytical as well as generative capabilities
(Achiam et al. 2023), to be capable of reliably processing
complex instructions (Ouyang et al. 2022), and – despite be-
ing derided as “stochastic parrots” in (Bender et al. 2021) –
to be excellent mimics of genre, attitude and speaking style.
This makes it possible to not just replace many parts of the
creative pipeline with LLMs, but to do so with a single LLM.

Our field has long invested significantly in symbolic sys-
tems that rely on bespoke resources of the following kinds:
algorithms and rule-sets; XML tag sets; knowledge-bases;
ontologies; case-bases, and what (Ritchie 2001) calls inspir-
ing sets; and semi-structured datasets (e.g. of text n-grams).
A complex symbolic pipeline will integrate several, perhaps
many, discrete resources of this kind, with a dash of random-
ness and a statistical flourish or two for added good measure.
As such systems evolve in complexity and functionality over
time, new resources are added as older ones are overhauled.
Yet, for all this complexity, we still feel we understand how
these systems work, and how their best outputs come to be.

Indeed, we can often attribute a particular output effect to a
specific rule or process, perhaps acting in conjunction with
a certain exemplar or data item. This explainability lets us
discern deliberate creativity – when an effect is planned and
then realized – from accidental creativity, whose effects arise
largely by chance. Despite their complexity, these systems
are glass boxes into which we can peer to infer intentionality.

The inner workings of LLMs are more opaque, making it
harder to discern rote memorization (Nasr et al. 2023) from
true innovation. While explainability gives us the sense that
we can directly influence the type and the quality of our sys-
tems’ outputs, LLMs force us to accept a more nuanced form
of control. We can engineer our prompts to elicit the best
results (Wei et al. 2022), like a sorcerer cautiously instruct-
ing a wilful apprentice, or discard LLM outputs that fail to
meet our benchmarks. But creativity demands that we take
risks, and delegating any task to an LLM, especially a cre-
ative one, is inherently risky. Novelty fosters surprise, and
not all surprises are pleasant. Yet, LLMs can truly surprise
us, even charm and delight us, in part because our minds
cannot encompass the breadth of their generative reach (Hu-
bert, Awa, and Zabelina 2024). Explainability often results
in predictability, and rule-based systems tend to produce out-
puts that become increasingly predictable – one might even
say stilted or stale – the longer one is exposed to them. In
contrast, LLMs are risky but exciting alternatives that con-
tinue to produce fresh outputs long after the same levels of
exposure have bred a contempt for over-familiar templates.

This paper explores two instances in which LLMs replace
symbolic modules in a generative pipeline. Our focus of our
first case study is the generation of topical comic strips, in
which a complex pipeline turns a given topic into a polished
comic. We show how a single LLM can replace a wide range
of modules, each with its own bespoke knowledge source,
while improving the novelty, relevance and wit of the result-
ing comics. For balance, the second study highlights reasons
for caution when eliciting LLM outputs that are too novel or
constrained. This study, on joke generation (Winters 2021;
Veale 2021), lets us explore memorization, LLM fine-tuning
and retrieval-augmented generation (Lewis et al. 2020). We
eventually conclude with practical insights from both studies
as a set of lessons in re-implementing creative systems with
LLMs, but we begin by outlining key stages in the existing
pipeline for comics generation that are ripe for replacement.



Excelsior! A Generator of Topical Comics
Excelsior! is a topical generator that divides its production
of comics into two distinct phases: first, specifying a comic
in XML (Walsh 2012), before rendering this specification as
a set of visual panels (Veale 2022; 2023a; 2023b). As comics
are a sequential art form (Eisner 1985; McCloud 1993), a
generator must work globally – to sustain a narrative with a
stable aesthetic – and locally, to construct each panel in turn.
Excelsior! uses the following pipeline to build its comics:

1. A new topic is elicited from the user (e.g., speed limits,
global warming, vaccines, free speech, Elon Musk, etc.).

2. Two characters argue the PRO & ANTI sides of the topic.
3. Facts and trending views on the topic are gathered, from

knowledge graphs and from recent social media posts.
4. Of these, N benign views on the topic are chosen, to re-

flect the perspective of the PRO character. (N = 10)
5. Another N critical views are chosen, to reflect the skepti-

cal perspective of the ANTI character.
6. The talking points in 4 and 5 are articulated as idiomatic

dialogue in the speech balloons of PRO/ANTI characters.
7. Each character is assigned an apt pose for speaking their

dialogue, from a fixed inventory of 300 emotional poses.
8. A comic uses one panel per talking point. An apt setting is

chosen for each from 200 images, to suit its talking point.
9. A text caption is generated to introduce each panel, to

frame the clash of world views visualized within it.
10. A panel is specified for each talking point from the speech

in 6, the poses in 7, the setting in 8, and the caption in 9.
11. Some introductory panels are created to introduce each

character and the specific topic on which they will debate.
12. A final panel is generated to conclude the debate and close

the comic. This is the closing bookend to the opener in 11.
13. A full XML specification is generated. This integrates all

of the text and visuals that are produced in steps 6 to 12.
14. The XML specification is rendered as a sequence of visual

panels using the system’s inventory of poses and settings.

Excelsior! employs two comics-specific representations: a
model of the poses that characters can adopt when speaking,
and a model of the backgrounds that they can pose against.
Each pose and each background has an associated image, a
descriptive label, and a list of the themes and emotions for
which it is an apt visual asset. The latter are used to match
snatches of dialogue to the most relevant poses, and caption
texts to the most relevant backgrounds. If it is not possible to
find a symbolic match between a pose and some dialogue, or
between a background and a caption, vector embeddings of
each are instead compared using the cosine similarity met-
ric. In that case, ada-002 embeddings of 1536 dimensions
from OpenAI1 are used to compare the vector embedding of
a text to the embedding of an asset’s descriptive label. Every
pairing of poses must suit each other and their background to
be accepted; e.g., outdoor activities require outdoor settings.

1https://api.openai.com/v1/embeddings

For general knowledge about a topic we can look to static
knowledge graphs (such as DBPedia.org), or generic ontolo-
gies such as CYC (Lenat and Marcus 2023) and ConceptNet
(Speer, Chin, and Havasi 2018), or to a bespoke knowledge-
base of our own design. But for a topical, up-to-the-minute
take on a topic, we must look to a more fluid medium such as
X (née Twitter) to see what views are currently trending. Ex-
celsior! harvests recent hashtags about a topic from X using
the Twitter API, which limits searches to the past week. It is
generative in its search: rather than collect all hashtags in a
trawl of social media, and filter for those that are on topic, it
instead generates candidate tags for a wide range of views on
the topic and searches directly for those. A bespoke ontol-
ogy maps from conceptual and emotional framings of a topic
T (e.g. that it is respected, shameful, disgusting or heroic) to
likely hashtag forms (e.g., #{T}Sucks, #{T}isAHoax, #Im-
peach{T} or #Vote{T}2024). In this way, Excelsior! gathers
the N positive and N negative talking points of steps 4 - 5

To provide the dialogue of step 6, each framing is linked
to a set of dialogue patterns that render a talking point and
its telegraphic tag as natural speech, while variants of these
text patterns provide the substance of the caption in step 9.
As noted earlier, the text of each character’s dialogue is used
to choose their pose within a panel (step 7), while the text of
the caption is used to pick the panel’s background (step 8).
The example in Fig. 1 presents two points of view in the gun
rights debate: Guns save lives versus Guns kill. For clarity,
the PRO side is argued by a blue figure, the ANTI by a red.

Figure 1: A panel based on the claim that #GunsSaveLives

The heroic and mourning poses are apt for each speaker’s
point of view, while the graveyard setting also suits the life-
vs-death contention of the panel. To wring more drama from
each topic, the ontology’s framing knowledge allows panels
to be arranged in a sequence of mounting emotionality. Mid-
way, this sequence pivots so that the driving force of the
debate is no longer the PRO side (as shown in Fig. 1) but the
ANTI side, thus forcing the PRO figure onto the defensive.



ExcelsiorLLM! Large Language Marvels
As a symbolic system, Excelsior! is a pipeline of rules, tem-
plates and schemas. These have all been engineered at every
stage to reliably produce results that are predictable in their
competence, but they rarely delight, or ever truly surprise.
As ExcelsiorLLM! replaces several of these stages with calls
to an LLM, in particular steps 4, 5, 6 and 9, the new system
is more divergent, more incisive and often more surprising.

We use GPT3.5-Turbo from OpenAI, as this offers good
performance at a low API cost (e.g. less than 1¢ per comic).
Since this LLM has a limited training horizon that excludes
recent events, we keep step 3 – harvesting topical views from
social media – and use the text that Excelsior! produces from
templates not as dialogue for the comic, but as a context for
retrieval-augmented generation (RAG) (Lewis et al. 2020).
An LLM can use its general knowledge to speak to the topics
of Barbie or J. Robert Oppenheimer, but needs a contextual
boost to speak to a recent invention like Barbenheimer. That
this topical content is expressed in stilted terms hardly mat-
ters; what matters is that it fills a gap in the LLM’s coverage.

Although natural language is an LLM’s stock in trade, we
can also use LLMs to generate artificial language. For step 3,
we prompt the LLM for N semantic triples about a topic T ,
where our symbolic templates supply an augmented context.
We take care to define what we mean by a semantic triple:

<< Prior retrieval-augmented content about T >>
The tuple (Donut, has part, hole in the middle) is
a semantic triple that describes the concept Donut.
Each triple has the form (Subject, predicate, object).
Now suggest <N> semantic triples to capture a neutral
view of the concept <T>. Number them 1 to <N>.

When our topic T = Robert Oppenheimer and N = 10, this
prompt elicits the following response from GPT3.5-Turbo:

Here are 10 semantic triples about Robert Oppenheimer:

1. (Robert Oppenheimer, born in, New York City)
2. (Robert Oppenheimer, studied at, Harvard university)
3. (Robert Oppenheimer, made advances in, physics)
4. (Robert Oppenheimer, leader of, the Manhattan Project)
5. ...

10. (Robert Oppenheimer, major figure in, nuclear physics)

The transition from symbolic to LLM-based approaches is
eased greatly when the LLM produces intermediate content
of a kind that a symbolic system already knows how to use.
We now ask the LLM to generate a positive (benign) and a
negative (cynical) spin on each of these N talking points, to
provide points of view for our PRO and ANTI characters.
To add punch to the debate, we appeal to the Keats heuristic
(McGlone and Tofighbakhsh 1999) in this prompt to imbue
their dialogue with a sense of poetry and complementarity:

Pithily express these triples as rhyming couplets, pair-
ing a benign view with a cynical view in each. Prefix
each with benign: or cynical: Use the same numbering.
Batching a request to an LLM in this way – to apply to all

N triples at once – ensures the consistency of its response, as
shown in the LLM’s couplets on the topic of Oppenheimer,
which all exhibit the same Yes, but call-and-response format:

1. benign: Oppenheimer, born in New York City
cynical: But that’s not enough to make him pretty.

2. benign: Studied at Harvard, the best of the best
cynical: But privilege and wealth gave him an unfair test.

3. benign: A physicist, his work was groundbreaking
cynical: But his legacy includes destruction and shaking.

4. benign: He contributed to the Manhattan Project
cynical: But his creation left the world wrecked.

5. ...
10. benign: A prominent figure in the history of nuclear physics

cynical: But his work led to destruction & catastrophic risks.

The rhyme enhances the sense that each person’s perspective
has an equal but opposite counterpart, and that none is priv-
ileged. If rhyme gives each couplet a local coherence, batch
prompting for all N at once gives a comic global coherence.
A key aim of an Excelsior! comic is to present both sides of
a debate without showing favor or bias to either side, and we
enhance this sense that no opinion is privileged by choosing
yet another voice for the captions. LLMs like GPT3.5-Turbo
are skilled mimics of style and attitude, and show a good ear
for the distinctive rhythms and themes of famous speakers.
We employ a pool of fifty such speakers, from Bane to Yoda
by way of Borat, Donald Trump and Emimem, and augment
Excelsior! with visual assets for each. The LLM is prompted
to create captions for all N triples in the voice that is chosen:

Pithily express each triple in the distinctive voice and
style of <<Narrator>>. Keep the original numbering.
On the topic of Oppenheimer, the prompt returns the fol-

lowing caption when the chosen narrator is Donald Trump:
“Enrico Fermi Award, big deal! Robert Oppenheimer re-
ceived it. I receive awards all the time, people love me.”
The LLM channels the narcissism of the speaker, but it is
not at all pithy. When the narrator is Eminem, the captions
are earthier and more concise, and they rhyme, as shown in
Figure 2. By channeling each semantic triple through a third
speaker with their own biases, the resulting caption is more
than a mere summary of a neutral fact. Rather, each makes
new claims, such as that Oppenheimer “was raised in a place
where the streets were gritty” (panel 1), “was wicked smart”
(panel 2) and “a true intellectual, no pretenses” (panel 4).
Excelsior! does not take sides, but simply aims to show that
there is more than one side to a contentious topic. It does not
try to change minds, but to foster discussion across divides.
Using the Keats heuristic, an LLM can achieve a measure of
wit in the fit between perspectives, but real humour – of the
kind that comics are expected to provide – demands more.

Large Laughter Models: From Aha! to HaHa!
Incongruity, the inciting spark of humour (Suls 1972; Veale
2004; 2021). often arises from friction between two beliefs,
ideas, or points of view (Koestler 1964). Excelsior! fosters
incongruity by placing opposing views on a common topic
within the same panels, and aims for a partial resolution of
this incongruity by uniting the opposing views in rhyme. It
is resolution that elevates humour above sheer nonsense and
allows audiences to find meaning in apparent contradictions.



	

	

	
	 	 	

	 	 	

	 	 	
	

	 	 	

Figure 2: A comic generated with ExcelsiorLLM! on the topic of J. Robert Oppenheimer.



Using the classic rule of three in comedy (Dean 2001),
Veale (2023b) uses similes harvested from the web to inject
humour into topical comics. An ontology identifies qualities
that are salient of a topic in a given framing, such as e.g. that
a person is popular, dishonest, clever or dangerous, and jux-
taposes literal with ironic similes for those qualities. Each
simile is visualized across three panels: the first panel asserts
the quality; the second highlights it with a visual exemplar;
and the third elaborates this exemplar. In ironic similes, the
elaboration actively subverts the comparison, as in this case:
<T> is as fierce as ... a dog ... in a Christmas sweater. The
generator’s large stock of web similes augments its smaller
stock of dialogue patterns, but the 3-panel simile pattern also
becomes somewhat formulaic and predictable with over-use.

LLMs like GPT3.5-Turbo exhibit their own, facile feel for
humour, and can channel the fixations and comedic stylings
of stand-up greats such as Jerry Seinfeld and George Car-
lin. They can also generate topical quips in the manner of a
chat show host, as shown in (Toplyn 2021; 2022). Toplyn’s
WitScript turns headlines into gags by prompting the LLM
to follow his step-by-step guide for writers in (Toplyn 2014).
But GPT3.5 leans heavily on a small stock of gags (about 25
or so) when asked to just tell a joke (Jentzsch and Kersting
2023), while GPT3.5 and GPT4 each lack concision, and a
lightness of touch, when asked to joke about a given topic.
Our focus here is on gags with snappy setups and punchlines
that can be delivered as one-two jabs in paired text balloons.

As our inspiring set (Ritchie 2001), we filter a large body
of jokes from Reddit’s r/jokes subreddit, keeping those with
a single-sentence setup and a single-sentence punchline. We
remove duplicates by comparing vector embeddings of each
using the cosine similarity metric; if two jokes have a simi-
larity of .9 or more, we discard the one with fewer upvotes
(Reddit’s equivalent of a thumbs-up). We also use OpenAI’s
Moderation API to filter out jokes that it flags as abusive,
sexist, racist or homophobic, and we use our own vulgar-
ity filter to remove instances of bad language. Finally, we
discard a long-tail of jokes that have fewer than 3 upvotes
each, to focus on those that have received some explicit ap-
proval. This leaves us an inspiring set of 6,246 short jokes.
The most popular joke, with 30,499 upvotes, is: How do you
milk sheep? With iPhone accessories. As a rule, punchlines
are snappier than setups, with jokes having a mean setup
length of 46 characters (µ = 46.17, σ = 14.61) and a mean
punchline length of 27 characters (µ = 27.13, σ = 17.1).
Only in 15% of cases is the punchline longer that the setup.

We can use this inspiring set in a variety of ways to chan-
nel and focus the LLM’s sense of humour. In the simplest
case, we pre-prompt the model with a sample joke or two be-
fore eliciting a new joke on our chosen topic. If these sample
jokes are chosen because of their relevance to the topic, this
becomes a form of retrieval-augmented generation, or RAG
(Lewis et al. 2020). More expensively, we can fine-tune a
new version of an LLM on our inspiring set, to entrain it to
produce more jokes in the same vein. In each case, examples
are shown to the LLM as two lines; the first has setup: as a
prefix and the second has punchline: as a prefix. We prompt
the LLM to generate setups for each new topic, as it appears
to understand how a typical joke setup is supposed to work.

For instance, when prompted to suggest setups for jokes
on climate change, GPT3.5-Turbo offers “Why did the ther-
mometer break up with the weather report?” and “Why did
the greenhouse gas attend anger management classes?” The
length of each is within one standard deviation of the mean
setup length of our inspiring set and, like the majority of
short jokes in the Reddit data, each is framed as a question.
To bulk evaluate an LLM’s joke generation capabilities, we
can also ask it to generate N topics for new joke setups:

A classic joke will focus on a topic such as annoying in-
laws, faithless spouses, crooked lawyers, lying politi-
cians, inflexible bureaucrats and so on. Suggest <N>
topics for new jokes. Number the topics 1 to <N>.

To the examples stated above, GPT3.5-Turbo will often add:
conspiracy theorists, telemarketers, bad drivers, traffic jams,
lazy co-workers, social media, and poor customer service.
To elicit a sample of 1000 new jokes from the LLM, we first
elicit topics in batches of N = 20, then elicit 10 setups for
each topic, and then a punchline for each setup by prompting
the LLM with the prefix setup: and a given setup, as in:

setup: Why did the thermometer break up with
the weather report?

punchline: Because the weather report was always
blowing hot and cold!

As shown here, the LLM already knows enough about the
structure of jokes to add the prefix punchline: to its response.
We can now test GPT3.5-Turbo’s joke generation abilities
by rating 1000 jokes produced for each of these conditions:

Baseline:
Before prompting with a given setup, a
single exemplar of a setup: and punchline:
pairing is provided. The exemplar joke is:
setup: Why do politicians take laxatives?
punchline: So they can speak more fluently.

RAG:
Before prompting with a given setup, the
two most similar jokes in the inspiring set
are retrieved and offered as a prior context.

Fine-tuned:
The LLM is fine-tuned for 1 epoch using
all 6,246 jokes in the inspiring set. During
this fine-tuning, each joke is presented as a
setup: prompt and a punchline: response.

Sampling:

As in the baseline, but generated jokes are
sampled for concision and balance. A joke
is discarded (and a new one sampled in its
place) if its setup or punchline is more than
one standard deviation longer than the
corresponding means in the inspiring set,
or if its punchline is longer than its setup.

In rating the results of each approach, we focus on three cri-
teria: coherence, insincerity and novelty. A punchline must
cohere with its setup, and follow causally from it, even if a
joke employs its own silly pseudo-logic. It should not leave
the reader stymied, nor seem to belong to another setup. A



joke must exhibit pragmatic insincerity (Kumon-Nakamura
and Glucksberg 1995), and so a punchline should not read
as a sincere or literal response to the setup. Moreover, a joke
must have novelty, and not merely repackage a familiar joke
from the LLM’s training data (Jentzsch and Kersting 2023).
A punchline must actually work as a punchline, and not just
as wry banter, for a pairing to be considered a joke, even if
only a weak one. We view jokes as tight pairings of setup
and punchline that work in a null context, and that one wants
to retell to new audiences. Most LLM outputs for each ap-
proach fail to meet this strict threshold for jokes rather than
mere wit, even when they exhibit coherence and insincerity.

Table 1 shows how our four approaches fare on two key
criteria, coherence and insincerity. It seems that fine-tuning
for jokes undermines the LLM’s built-in sense of coherence,
with 1 in 4 of its responses making no sense as punchlines or
literal completions e.g., “Did you hear about the actor who
became a beekeeper? He’s getting good reviews.” Surpris-
ingly, fine-tuning also elicits many more sincere responses
from the LLM, as in “Did you hear about the man who was
addicted to dating apps? He just couldn’t stop.” and “Why
do old people always fall asleep in front of the TV? Because
they’re old as f-ck.” The latter reveals yet another issue with
fine-tuning: the LLM’s carefully aligned system of values is
disrupted, leading it to produce vulgar or offensive outputs.
While our inspiring set is carefully moderated, it seems that
a joking sensibility can still license transgressive behaviour.

Approach Incoherent Too Sincere
Baseline 2.2% 4.1%
RAG 4.8% 10.3%
Fine-tuning 27.3% 19.4%
Sampling 2% 2.8%

Table 1: % of punchlines, by approach, that are incoherent
with their setup, or lack insincerity (too literal or sincere).

Most LLM outputs for each approach fail to meet our ex-
pectations of the prototypical short joke in the mould of our
inspiring set. The LLM excels at producing charmingly wry
banter, of the kind that works for late-night chat show hosts,
but many of its punches are weak or just fail to connect. Take
this output from the basline approach, “Why did the reality
TV contestant refuse to eat the food? Because it didn’t come
with a hashtag.”, which lacks a strong script conflict and a
sensible resolution (Raskin 1984). In fact, as shown in Table
2, most approaches produce more almost-jokes than jokes.

Approach Original Jokes Familiar Jokes
Baseline 3.9% 1.5%
RAG 19.6% 3.1%
Fine-tuning 11.1% 10.6%
Sampling 19.3% 11.3%

Table 2: % of acceptable new jokes, and % of regurgitated
jokes, by approach. All others are deemed almost-jokes.

The sampling approach, in which the LLM’s outputs are
sampled to identify pairings of setup and punchline that con-
form to the shape of jokes in our inspiring set, requires us to
generate many more candidate jokes than we accept. Just 1
in 5 outputs exhibit the required concision, where the setup
and punchline are each no more than one standard deviation
longer than their respective means in our inspiring set. Since
1 in 3 also have a punchline that is longer than its setup, we
must, on average, discard 6 candidates for every 1 we keep.
In contrast, 1 in 3 outputs from the fine-tuned LLM, and 1 in
4 RAG outputs, show the desired concision and snappiness.
Nonetheless, sampling for concision seems to be an effective
strategy, as it shows the best results overall in Table 2.

By seeking out jokes that reflect our inspiring set, sam-
pling has the highest rate of joke regurgitation (1 in 9), but
also a high rate of original joke invention (1 in 5). The RAG
approach shows a surprisingly low rate of regurgitation, de-
spite using multiple joke exemplars in its prompts. Since an
LLM has a bias against repeating itself, padding its context
with near-exemplars seems to bias it against familiar jokes.
RAG also has a slightly higher rate of joke invention, but the
increase is not statistically significant (19.6% versus 19.3%).
When we factor in the propensity of different approaches to
produce incoherent or overly sincere outputs (Table 1), then
sampling is the most effective means of producing topical
jokes – both new and old – for use in automated comics.

We might expect better results if we move to a dramati-
cally larger LLM, such as GPT4-Turbo, which has 8 times
as many weights as GPT3.5-Turbo (Achiam et al. 2023). We
re-evaluate all but the fine-tuning approach on GPT4 – fine-
tuning access to this is still limited at present – and find that
results do improve somewhat, especially for the baseline ap-
proach, but not so much as to justify the higher API costs.
For instance, the rate of original joke production jumps from
3.9% to 14% for the baseline approach, while its rate of joke
regurgitation remains low (3.75%). The sampling approach
also performs slightly better on the larger LLM, with its rate
of production increasing to 22.6% for original jokes, and to
15.1% for regurgitated ones. Conversely, the RAG approach
fares less well on GPT4-Turbo: its rate of new joke produc-
tion drops to 15.1%, while its rate of joke regurgitation rises
to a substantial 30.9%. The use of near-exemplars does not
reduce regurgitation now, but appears to actively increase it.

In summary, the best results at the best price are obtained
by using sampling on the smaller GPT3.5-Turbo. Its outputs
are assured to be snappy and concise, and they sit well in
the speech balloons of a comic strip. Nonetheless, sampling
complete outputs after they are generated means we discard
many unsuitable outputs for each one that we eventually use,
and of those that we do use, many still fall short as jokes.
Our experiments in eliciting topical jokes from LLMs – ac-
tual jokes, not just witty banter – have not delivered a supe-
rior replacement for our existing strategy of reconciling two
contrary points of view with a rhyming couplet. GPT3.5/4 is
no Keats, but it lets us make good use of the Keats heuristic.

Promises and Pitfalls, Lessons and Insights
A single LLM is not a single creative system, but a legion of
potential systems that do our bidding through a single API.



This makes the LLM a versatile one-man-band that can play
multiple parts in our orchestra of otherwise distinct modules.
This protean flexibility can be harnessed in a variety of ways,
from prompt engineering to retrieval-augmented generation
to fine-tuning with a curated inspiring set, and in this section
we present some practical insights from our experiences of
re-developing the Excelsior! system around a single LLM.

Symbolic formalisms use a special kind of language
Language is just language to LLMs, whether it is a natural
language like English or an artificial one like Java or Python.
An LLM like GPT3.5-Turbo has seen a great many pseudo-
language symbolic representations in its web-scale training,
and can produce new ones on demand. If one can ask for the
facts about a topic T to be expressed as a haiku or a ballad,
an LLM can just as easily express them as semantic triples.
In this way, the LLM can replace a conventional knowledge-
base, and still integrate cleanly with modules that want their
knowledge inputs to be packaged in a very particular format.

Batch prompts ensure coherence across a workflow
Since LLMs can follow and produce long chains of thought
(Wei et al. 2022) when responding to user prompts, a series
of related prompts can instead be given to the model as a sin-
gle multi-step prompt, rather like a pseudo-code algorithm.
These algorithmic prompts can operate over numbered lists
of items, and produce new numbered lists as outputs. This
capability is especially useful when asking an LLM to invent
N examples of a class, such as N topics, captions or setups.
Divergence is a key feature of creativity, one that LLMs de-
liver in spades, but it is one that must be carefully harnessed
across the workflow to produce a consistent end-product. By
batching items into numbered lists, we can ensure that items
in the same job are subject to the same divergent choices.

Stilted symbolic outputs can find a new audience
Fluent divergence is a key factor in the use of LLMs in place
of more conventional rule- and template-based generators.
An LLM can glibly express the same intent in diverse ways,
and can capture the tacit conventions of a chosen genre or the
verbal cadences of a famous speaker. When symbolic gener-
ators become too formulaic for user-facing outputs, they can
still serve an internal audience: the LLM that replaces them.
The rules and templates of Excelsior! do something that the
LLM cannot do; they fill the stale patterns of its text genera-
tor with fresh content from the social media platform X . By
pouring new wine into old bottles, retrieval-augmented gen-
eration, or RAG, can bring the LLM up to date on a topic,
allowing the LLM to transcend the limits of its training data.

Don’t Super-Size Me! ... yet
Larger LLMs with many more parameters may exhibit emer-
gent problem-solving abilities and a deeper understanding of
language, causality and human affairs (Achiam et al. 2023).
Larger LLMs are also costlier to train, to run, and to access
via paid APIs. Yet, for certain creative domains like humour,
increased performance may not justify increased costs, and
one may do more, and do it more nimbly – e.g., with more
use of sampling – with smaller, more cost-effective LLMs.

Fine-tuning can unleash the wild “id” of an LLM
In the jargon of (Freud 1905), an LLM has both an “id” and
a “super-ego,” albeit only metaphorically. The id of an LLM
is the dark heart of the web data on which it is trained, which
makes an LLM capable of saying the most appalling things.
The super-ego of an LLM is the set of values with which it is
aligned, via careful fine-tuning and reinforcement learning.
Subsequent fine-tuning on a new dataset, even one specially
filtered for offensive language, can subvert this super-ego. In
fact, we find that fine-tuning GPT3.5-Turbo on a clean joke
set can lead to frequently incoherent, vulgar or even ungram-
matical outputs, such as this oddity: “Why did the politician
have an affair? He wanted to take a position that would help
keep the whole country’s nuts out of his own country’s eyes.”
Fine-tuning seems to increase the LLM’s willingness to flirt
with incongruity, but not its skill for making it meaningful.

LLMs have not yet mastered negation
The words we use to express negation, such as not, no and
never, are not like other words, and no localized word em-
bedding can capture the effect they have on a text. LLMs can
stumble over negation (Jang and Lukasiewicz 2023), and of-
ten fail to see the self-cancelling effect of a double negative.
Excelsior! aims to air opposing views in the same comics,
but even GPT3.5-Turbo often goes awry when asked to pro-
duce the opposite of a given claim, as when it turns the triple
(Superhero, hasPower, Superhuman strength) into (Normal
person, lacksPower, Normal strength). We find that the LLM
shows a stronger aptitude for cynicism and irony than for the
logical operators, like negation, that such language entails,
perhaps because such language is expected to be ambiguous.

LLMs can be creative, unless you ask them to be
There is often little point in asking an LLM to be “creative,”
any more than there is in asking it to be ”spontaneous.” The
term has a loose and rather vague meaning even for humans,
and LLMs are more responsive when asked for a particular
kind of creativity, such as irony. So, when it is asked for texts
for creative fortune cookies, GPT3.5-Turbo offers platitudes
such as “You are the architect of your destiny. Build wisely.”
The term “creative” is just too under-specified to elevate its
outputs above the merely generative. Yet, if we ask the LLM
for ironic fortune cookies, its outputs show more originality,
as in: “Good things come to those who wait ... forever” and
“Your dreams will come true ... in an alternate universe.”

API users can gaslight LLMs into non-conformity
The value alignment process imbues LLMs like GPT3.5/4
with a great many legitimate sensitivities, yet these can also
lead an LLM to over-react to reasonable prompts. Moreover,
sensitivities can also vary from one model build to another.
Each prompt to the LLM via its API must remind the model
of what has been said so far, by both the model and its client.
This requirement allows the client to misinform, or gaslight,
the model, and so put words into its mouth that it never said.
In this way we can desensitize an LLM so that it will speak
more freely, and more trenchantly, about contentious topics
of interest to the client, such as politics and social attitudes.
As this strategy can be abused, it should be used with care.



LLMs are statistical magpies and stochastic parrots
A language model’s ability to accurately reproduce the hall-
marks of a genre and a style have led them to be derided as
“stochastic parrots” (Bender et al. 2021), but like skilled hu-
man mimics, LLMs do much more than just repeat what they
hear. They invent as they echo, generating optimal innova-
tions (Giora et al. 2004) that are both familiar and original.
These innovations often repurpose a term (or even a typo) in
the LLM’s training data, as in a joke from the sampling ap-
proach: “Why did the Instagram model refuse to befriend the
plant? Because it was too photosynthetic.” The LLM has a
magpie’s eye for readymade blends like photo+ synthetic
onto which it can graft a new meaning in a new context.

LLMs can be too talkative for their own good
Our experiments in joke generation suggest that LLMs lack
the killer instinct needed to generate a good punchline. Jokes
say more with less, but only 1 in 5 outputs from the baseline
approach exhibit the concision of our inspiring set. In learn-
ing what to say from its training data, an LLM may not learn
what is better left unsaid. To the extent that an LLM can be
said to think at all, it “thinks” in words: the more tokens it
produces, the more compute it expends on a task (Wei et al.
2022). However, jokes require us to expend as much effort
thinking about what not to say as about what to actually say.
Fine-tuning can direct an LLM’s efforts into fewer but more
apropos tokens, yet the incoherence of the outputs speaks
for itself: producing less also means thinking less. A chain-
of-thought solution might instead expend more compute on
more intermediate tokens that are not seen by the user.

LLMs can develop memory lapses as they age
Fine-tuning can disrupt an LLM’s weights, causing it to cat-
astrophically forget what it had earlier learnt (Luo et al.
2023). Our fine-tuning of GPT3.5-Turbo for jokes degraded
its performance on semantics and grammar, but continuous
updates by an LLM’s own makers can also cause it to show
diminished competence for tasks at which it previously ex-
celled. We must be careful to use a specific build of an LLM
to replace symbolic components of the creative pipeline, as
newer builds may no longer deliver the expected behaviours.

Conclusions
Reworking a creative symbolic system to make use of a large
language model is a bittersweet experience. Large chunks of
the generative pipeline can be replaced with simple prompts
to a single LLM, which will produce responses that are more
fluently divergent than anything we can expect from a set of
rules, but pride in these outputs would be misplaced. As well
engineered and sophisticated as our prompts might be, they
are merely guidelines for a black-box LLM that will, in the
end, make its own creative choices. Yet this, in a way, is also
just what we want: we want our creative system to transcend
our commands, to obey us and to simultaneously surprise us.
Placing LLMs in the generative pipeline makes this contra-
dictory mix of obedience and surprise an engineering reality.
Creativity necessitates risk, whether for a human creator, an
autonomous system, or the designers of such a system.

We have explored two cases studies in this paper. We con-
sider the first an engineering success, the second less so. In
that first study, we replaced multiple generative components
and knowledge-bases with a single LLM, to generate topical
comics that are far superior to those of the original system.
Nonetheless, the newly refactored system retains key aspects
of the original, and repurposes its most rule-bound mod-
ule, the dialogue generator, to augment the LLM with new
viewpoints from social media. Refactoring is itself a meta-
creative process. Change may be incremental, and the tran-
sition from symbolic caterpillar to statistical butterfly need
not be either total or sudden. For once an LLM is integrated
into a creative system’s workflow, it becomes relatively sim-
ple to replace other tasks with well-engineered prompts too.

The second study identified some areas of fragility that
may give us pause when integrating LLMs into our creative
pipeline. An LLM such as GPT3.5-Turbo is facile in its gen-
eration of witty, idiomatic and metaphor-rich texts, and will
imbue its texts with a poetic, sardonic or cynical attitude on
demand, but still has some way to go towards capturing the
snap, crackle and pop of a tightly-controlled joke. Indeed,
it is in the creation of new jokes that the LLM acts most
like a “stochastic parrot,” repeating (or re-inventing) exist-
ing jokes from its own training data. Although we have seen
some promising approaches to joke generation, none is as
yet reliable enough to use in a fully-automated system. For
now, the Keats heuristic – the use of surface rhyme to con-
vey a deeper resonance, at which LLMs excel – is sufficient
for our goal of concisely uniting opposing points of view.

Acknowledgments
This paper is wholly the work of the author but has benefited
from discussions with friends, colleagues and students.



References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; and et al.
2023. GPT-4 Technical Report. arXiv preprint 2303.08774.
Bender, E.; Gebru, T.; McMillan-Major, A.; and Mitchell,
M. 2021. On the dangers of stochastic parrots: Can lan-
guage models be too big? In Proceedings of FAccT-21 ACM
Conference on Fairness, Accountability, and Transparency,
610–621.
Dean, G. 2001. Step-by-Step to Stand-Up Comedy. New
Hampshire: Heinemann.
Eisner, W. 1985. Comics & Sequential Art. Tamarac,
Florida: Poorhouse Press.
Freud, S. 1905. Jokes and Their Relation to the Uncon-
scious. New York: Norton. Translated by James Strachey.
Giora, R.; Fein, O.; Ganzi, J.; Levi, N. A.; and Sabah, H.
2004. Weapons of mass distraction: Optimal innovation and
pleasure ratings. Metaphor and Symbol 19(2):115–141.
Hubert, K.; Awa, K.; and Zabelina, D. 2024. The current
state of artificial intelligence generative language models is
more creative than humans on divergent thinking tasks. Sci-
entific Reports 14(3440).
Jang, M. E., and Lukasiewicz, T. 2023. Consistency analysis
of ChatGPT. arXiv 2303.06273.
Jentzsch, S., and Kersting, K. 2023. ChatGPT is fun, but
it is not funny! Humor is still challenging Large Language
Models. arXiv 2306.04563.
Koestler, A. 1964. The Act of Creation. London, UK: Pen-
guin Books.
Kumon-Nakamura, S., and Glucksberg, S. 1995. How about
another piece of pie: The allusional pretense theory of dis-
course irony. Journal of Experimental Psychology: General,
124(1):3–21.
Lenat, D., and Marcus, G. 2023. Getting from Generative
AI to Trustworthy AI: What LLMs might learn from Cyc.
arXiv 2308.04445.
Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.;
Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.-T.; Rocktäschel,
T.; Riedel, S.; and Kiela, D. 2020. Retrieval-augmented
generation for knowledge-intensive NLP tasks. Advances in
Neural Information Processing Systems 33:9459–74.
Luo, Y.; Yang, Z.; Meng, F.; Li, Y.; Zhou, J.; and Zhang,
Y. 2023. An empirical study of Catastrophic Forgetting in
Large Language Models during continual fine-tuning. arXiv
2308.08747.
McCloud, S. 1993. Understanding Comics: The Invisible
Art. New York, NY: Harper Collins.
McGlone, M. S., and Tofighbakhsh, J. 1999. The Keats
heuristic: Rhyme as reason in aphorism interpretation. Po-
etics 26(4):235–44.
Nasr, M.; Carlini, N.; Hayase, J.; Jagielski, M.; Cooper, A.;
Ippolito, D.; Choquette-Choo, C.; Wallace, E.; Tramèr, F.;
and Lee, K. 2023. Scalable extraction of training data from
(production) language models. arXiv 2311.17035.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; and et al., C.
L. W. 2022. Training language models to follow instructions

with human feedback. In Proceedings of NeurIPS-22, the
36th Conference on Neural Information Processing Systems.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. OpenAI Blog 1(8).
Raskin, V. 1984. Semantic Mechanisms of Humor. Dor-
drecht: D. Reidel.
Ritchie, G. 2001. Assessing creativity. In Proceedings of
AISB Symposium on AI and Creativity in Art and Science.
Society for the Study of Artificial Intelligence and Simula-
tion of Behaviour.
Speer, R.; Chin, J.; and Havasi, C. 2018. Conceptnet 5.5:
An open multilingual graph of general knowledge. arXiv
1612.03975.
Suls, J. M. 1972. The Psychology of Humor. Cambridge,
MA: Academic Press. chapter A Two-Stage Model for
the Appreciation of Jokes and Cartoons: An information-
processing analysis.
Toplyn, J. 2014. Comedy Writing for Late-Night TV. New
York, NY: Twenty Lane Media.
Toplyn, J. 2021. Witscript: A system for generating im-
provised jokes in a conversation. In Proceedings of the
ICCC-21, the 12th International Conference on Computa-
tional Creativity, 22–31.
Toplyn, J. 2022. Witscript 2: A system for generating
improvised jokes without wordplay. In Proceedings of the
ICCC-22, the 13th International Conference on Computa-
tional Creativity.
Veale, T. 2004. Incongruity in humor: Root-cause or epiphe-
nomenon? Humor: International Journal of Humor Re-
search 17(4):419–428.
Veale, T. 2021. Your Wit Is My Command: Building AIs
with a Sense of Humor. Cambridge, MA: MIT Press.
Veale, T. 2022. Two-fisted comics generation: Comics as
a medium and as a representation for creative meanings. In
Proceedings of ICCC-22, the 13th International Conference
on Computational Creativity. 59–66.
Veale, T. 2023a. Have I Got Views For You! Generating
“Fair and Balanced” Interventions into Online Debates. In
Proceedings of ICCC-23, the 14th International Conference
on Computational Creativity.
Veale, T. 2023b. The Funhouse Mirror Has Two Sides: Vi-
sual storification of debates with comics. In Campos, R.;
Jorge, A.; Jatowt, A.; Bhatia, S.; and Litvak, M., eds., Pro-
ceedings of the Text2Story’23 Workshop at ECIR, the 45th
European Conference on Information Retrieval.
Walsh, J. 2012. Comic book markup language: An intro-
duction & rationale. Digital humanities quart. 6(1).
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. In Proceedings of NeurIPS-22, the 36th Conference on
Neural Information Processing Systems.
Winters, T. 2021. Computers learning humor is no joke.
Harvard Data Science Review 3(2).


