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Abstract 
Introspection is a question-led process in which one 
builds on what one already knows to explore what is 
possible and plausible. In creative introspection, 
whether in art or in science, framing the right question 
is as important as finding the right answer. 
Presupposition-laden questions are themselves a source 
of knowledge, and in this paper we show how widely-
held beliefs about the world can be dynamically 
acquired by harvesting such questions from the Web. 
We show how metaphorical reasoning can be modeled 
as an introspective process, one that builds on questions 
harvested from the Web to pose further speculative 
questions and queries. Metaphor is much more than a 
knowledge-hungry rhetorical device: it is a conceptual 
lever that allows a system to extend its model of the 
world. 

 1. Introduction  
Picasso once remarked that “Computers are useless. They 
can only give you answers”. Though reflecting a blinkered 
view of computers, his aphorism skewers a widespread 
tendency to prize the best answers while taking the best 
questions for granted. Creative processes, in art and in 
science, are fundamentally introspective (see Boden, 
1994), and to find the right answers one must learn to ask 
the right questions. Indeed, because questions often 
presuppose a shared understanding of the world, these 
presuppositions are a rich source of knowledge even when 
the questions go unanswered. We show here how 
knowledge can be acquired from the Web by harvesting 
presupposition-laden questions, and show how these 
questions can in turn be used as the basis for further 
introspection via metaphor. 
 Questions are the basic currency of any creative system. 
Consider the introspective workings of a metaphor 
processing system. To generate metaphors for a topic T, a 
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system must identify candidate vehicles V by asking 
“What Vs are most like T?”, and for each V, “how is T like 
V?”. Moreover, a system must appreciate the most salient 
aspects of V, since any metaphor T is V will transfer the 
most stereotypical aspects of V to T (see Ortony, 1979). 
We can identify these aspects by looking for questions that 
are commonly asked about V, and at their presuppositions 
(e.g. “why do pirates wear eye patches” presupposes that 
pirates wear eye patches). For purposes of introspective 
reasoning, the questions asked about V can be considered a 
good representation of V, and so we expect two concepts 
V1 and V2 to be similar to the extent that the same 
questions are asked of both. Likewise, the metaphor T is V 
prompts to us to take the questions we normally ask of V 
and introspectively ask them of T. Those that can be 
answered affirmatively can then become part of our 
representation of T. Metaphorical introspection allows us 
to leverage what we know about a topic and transfer this 
knowledge to new domains. We show here how questions 
can be harvested from, and answered on, the Web, to 
encode old knowledge and elicit new knowledge. By 
trading in questions as a knowledge representation, a 
system can learn how to pose its own questions and extend 
this representation as needed. 
 We develop and test these ideas in the following 
sections. A brief survey of related work is presented in 
section 2, while section 3 describes the basic question-
harvesting mechanism and the use of questions as a 
knowledge representation. Section 4 then shows how this 
question-based representation is leveraged in metaphor 
comprehension and generation. This section also shows 
how metaphor is used to flesh out an under-developed 
concept, and introduces the notion of a knowledge mash-
up, a composite representation of a topic that is based on 
the introspective application of its most likely metaphors. 
An empirical evaluation of these ideas is presented in 
section 5. Here we examine the effectiveness of using 
questions as a knowledge-representation, of using the Web 
to resolve the many new questions that are posed during 
metaphor processing, and of using metaphor and mash-ups 



as an introspective means of knowledge acquisition. The 
paper concludes with some observations about future 
directions in section 6. 

2.  Related Work and Ideas 
Metaphor and knowledge representation are tightly 
coupled phenomena. It takes knowledge to create or 
comprehend a metaphor, while metaphor allows us to bend 
and stretch our knowledge into new forms and niches. The 
computational treatment of metaphor thus presents a 
diverse catalogue of flexible representation schemes. Wilks 
(1978) argues that since most metaphors are semantically 
anomalous, a malleable preference semantics is required 
rather than a set of brittle semantic constraints. Fass (1991) 
builds on preference semantics to define a frame-based 
collative semantics that allows an alternative literal 
meaning to be salvaged from a figurative anomaly. Martin 
(1990) builds on the work of Lakoff and Johnson (1980) to 
show how conventional metaphors (like “to catch a cold” 
and “kill a process”) can be modeled in an AI knowledge 
representation, and then extended as needed to interpret 
new variations on the same metaphors in a given domain 
(e.g. “to kill Emacs” in the Unix domain). Way (1991) 
argues that metaphor requires a Dynamic Type Hierarchy 
(DTH) that can dynamically create new categories as they 
are needed. A rigid taxonomy like that of WordNet 
(Fellbaum, 1998) may be useful for literal language, but is 
unsuited to the demands of metaphor. However, a 
WordNet-scale realization of Way’s DTH remains an 
elusive goal. 
 We use metaphors not just as rhetorical flourishes, but as 
a basis for extending our inferential powers into new 
domains (Barnden, 2006). Indeed, work on analogical 
metaphors shows how metaphor and analogy use 
knowledge to create knowledge. Gentner’s (1983) 
Structure-Mapping Theory (SMT) argues that analogies 
allow us to impose structure on a poorly-understood 
domain, by mapping knowledge from one that is better 
understood. SME, the Structure-Mapping Engine 
(Falkenhainer et al., 1989), implements these ideas by 
identifying sub-graph isomorphisms between two mental 
representations. SME then projects connected sub-
structures from the source to the target domain. SMT 
prizes analogies that are systematic, yet a key issue in any 
structural approach is how a computer can acquire 
structured representations for itself.   
 The availability of large corpora and the Web suggests a 
means of relieving the knowledge bottleneck that afflicts 
computational models of metaphor and analogy. Turney 
and Littman (2005) show how a statistical model of 
relational similarity can be constructed from Web texts for 
handling proportional analogies of the kind used in SAT 
and GRE tests. No hand-coded or explicit knowledge is 
employed, yet Turney and Littman’s system achieves an 
average human grade on a set of 376 SAT analogies (such 
as mercenary:soldier::?:? where the best answer among 
four alternatives is hack:reporter). Almuhareb and Poesio 
(2004) describe how attributes and values can be harvested 

for word-concepts from the Web, showing that these 
properties allow word-concepts to be clustered into 
category structures that replicate the semantic divisions 
made by WordNet. Veale and Hao (2007a) describe how 
stereotypical knowledge can be acquired from the Web by 
harvesting similes of the form “as P as C” (as in “as 
smooth as silk”), and go on to show, in Veale and Hao 
(2007b), how this body of 4000 or so stereotypes can be 
used in a Web-based model of metaphor generation and 
comprehension. 
 Shutova (2010) combines elements of several of these 
approaches. She annotates verbal metaphors in corpora 
(such as “to stir excitement”, where the verb “stir” is used 
metaphorically) with the corresponding conceptual 
metaphors identified in Lakoff and Johnson (1980). 
Statistical clustering techniques are then used to generalize 
from the annotated exemplars, allowing the system to 
recognize other metaphors in the same vein (e.g. “he 
swallowed his anger”). These clusters can also be analyzed 
to identify literal paraphrases for a given metaphor (such as 
“to provoke excitement” or “suppress anger”). Shutova’s 
approach is noteworthy for operating with Lakoff and 
Johnson’s inventory of conceptual metaphors without 
actually using an explicit knowledge representation. 
 The questions people ask, and the Web queries they 
pose, are a rich source of implicit knowledge about the 
world. The challenge we face as computationalists lies in 
turning this implicit knowledge into explicit 
representations. Pasca and Van Durme (2007) show how 
knowledge of classes and their attributes can be extracted 
from the queries that are processed (and logged) by Web 
search engines. We focus here on well-formed questions, 
found either in the query logs of a search engine or 
harvested from the texts of the Web. These questions can 
be viewed as atomic properties of their topics, but can also 
be parsed to yield logical forms for reasoning. We show 
here how, by representing topics via the questions that are 
asked about them, we can also grow our KB via metaphor, 
by posing these questions introspectively of other topics as 
well. 

3.  Eavesdropping for Questions on the Web 
Amid the ferment and noise of the Web sit nuggets of 
stereotypical world knowledge, in forms that can be 
automatically extracted by a computer. To acquire a 
property P for a topic T, one can look for explicit 
declarations of T’s P-ness, but such declarations are rare, 
as speakers are loathe to explicitly articulate truths that are 
tacitly assumed by listeners. Hearst (1992) observes that 
the best way to capture tacit truths in large corpora (or on 
the Web) is to look for stable linguistic constructions that 
presuppose the desired knowledge. So rather than look for 
“all Xs are Ys”, which is logically direct but exceedingly 
rare, Hearst-patterns like “Xs and other Ys” presuppose the 
same hypernymic relations. By mining presuppositions 
rather than declarations, a harvester can cut through the 
layers of noise and misdirection that are endemic to the 
Web. 



 If W is a count noun denoting a topic TW, then the query 
“why do W+plural *” allows us to retrieve questions posed 
about TW on the Web, in this case via the GoogleTM API. 
If W is a mass noun or a proper-name, we instead use the 
query “why does W *”.  These two formulations show the 
benefits of using questions as extraction patterns: a query 
is framed by a WH-question word and a question mark, 
ensuring that a complete statement is retrieved (Google 
snippets often contain sentence fragments); and number 
agreement between “do”/”does” and W suggests that the 
question is syntactically well-formed (good grammar helps 
discriminate well-formed musings from random noise). 
Queries with the subject TW are dispatched whenever the 
system wishes to learn about a topic T. We ask the Google 
API to return 200 snippets per query, which are then 
parsed to extract well-formed questions and their logical 
forms. Questions that cannot be so parsed are rejected as 
being too complex for later re-use in introspection. 
 For instance, the topic pirate yields the query “why do 
pirates *”, to retrieve snippets that include these questions: 

 Why do pirates always have parrots on their shoulder? 
 Why do pirates wear eye patches? 
 Why do pirates hijack vessels? 
 Why do pirates have wooden legs? 

Parsing the 3rd question above, we obtain its logical form: 

  ∀x  pirate(x) à ∃y  vessel(y) ∧  hijack(x, y) 

Questions are retrieved on a need-to-know basis for a 
given topic. However, a system needs a critical mass of 
commonsense knowledge before it can be usefully applied 
to problems such as metaphor comprehension and 
generation, or to other similarity-centered tasks that 
presuppose a large body of knowledge that one can draw 
on for comparisons. Ideally, we could extract a large body 
of everyday musings from the query log of a search engine 
like Google, since many users persist in using full NL 
questions as Web queries. Yet such logs are jealously 
guarded, not least on concerns about privacy. Nonetheless, 
engines like Google do expose the most common queries 
in the form of text completions: as one types a query into 
the search box, Google anticipates the user’s query by 
matching it against past queries, and offers a variety of 
popular completions.  
 In an approach we dub Google milking, we coax 
completions from the Google search box for a long list of 
strings with the prefix “why do”, such as “why do a” 
(which prompts “why do animals hibernate?”), and “why 
do aa” (which prompts “why do aa batteries leak?”). We 
use a manual trie-driven approach, using the input “why do 
X” to determine if any completions are available for a topic 
prefixed with X, before then drilling deeper with “why do 
Xa” … “why do Xz”. Though laborious, this process taps 
into a veritable mother lode of nuggets of conventional 
wisdom. Two weeks of milking yields approx. 25,000 of 

the most common questions on the Web, for over 2,000 
topics, providing critical mass for the processes to come. 

4.  Introspective Metaphors and Mash-ups 
A system that finds knowledge in questions posed by 
others is ideally poised to ask questions of its own, by 
repurposing past questions for new topics. Consider that 
Google milking yields the following common questions for 
poet: 

 Why do poets repeat words? 
 Why do poets use metaphors? 
 Why do poets use alliteration? 
 Why do poets use rhyme? 
 Why do poets use repetition? 
 Why do poets write poetry? 
 Why do poets write about love? 

Questioning the Web directly, the system finds other 
common presuppositions about poets, such as “why do 
poets die poor?” and “why do poets die young?”, precisely 
the kind of knowledge that shapes our stereotypical view 
of the topic yet which one is unlikely to find in a dictionary 
or other lexico-semantic resources. Now imagine we pose 
the metaphor Philosophers are Poets, which prompts the 
introspective question “how are philosophers like poets?”. 
This question spawns others, which are produced by 
replacing the subject of the poet-specific questions above, 
yielding new introspective questions such as “do 
philosophers write poetry?”, “do philosophers use 
metaphors?”, and “do philosophers write about love?”. 
Each repurposed question can be answered by again 
appealing to the Web: the system simply looks for 
evidence that the hypothesis in question (such as 
“philosophers use metaphors”) is used in one or more Web 
texts. In this case, the Google API finds supporting 
documents for the following hypotheses: “philosophers die 
poor” (3 results), “philosophers die young” (6 results), 
“philosophers use metaphors” (156 results), and 
“philosophers write about love” (2 results). In line with 
Ortony (1979), the goal here is not to show that these 
behaviors are as salient for philosophers as they are for 
poets, rather that they are meaningful for philosophers. 

4.1  Generative Similarity and Metaphor 
In metaphor generation, one starts with a topic T and 
introspects about the vehicles V1 … Vn that might 
plausibly yield a meaningful and revealing comparison. A 
locality assumption limits the scale of the search space for 
vehicles, by assuming that T must exhibit a pragmatic 
similarity to any vehicle Vi. Budanitsky and Hirst (2006) 
describe a raft of term-similarity measures based on 
WordNet (Fellbaum, 1998), but what is needed for 
metaphor is a generative measure: one that can quantify the 



similarity of T to V as well as suggest a range of likely V’s 
for any given topic T. 
 We construct such a measure via corpus analysis, since a 
measure trained on corpora can easily be made corpus-
specific and thus domain- or context-specific. The Google 
ngrams (Brants and Franz, 2006) provide a large collection 
of word sequences from Web texts. Looking to the 3-
grams, we extract coordinations of generic nouns of the 
form “Xs and Ys”. For each coordination, such as “tables 
and chairs” or “artists and scientists”, X is considered a 
pragmatic neighbor of Y, and vice versa. When generating 
metaphors for a topic T, we now consider the pragmatic 
neighbors of T to be candidate vehicles for comparison. 
 Further, if we consider the pragmatic neighbors of T to 
be features of T, then a vector space representation for 
topics can be constructed, such that the vector for a topic T 
contains all of the neighbors of T that are identified in the 
Google 3-grams. In turn, this vector representation allows 
us to calculate the similarity of a topic T to a vehicle V, 
and thus rank the neighbors of T by their similarity to T. 
 This approach to similarity does not use WordNet, but is 
capable of replicating the same semantic divisions made by 
WordNet. Recall that Almuhareb and Poesio (2004) 
extracted features for concepts from text-patterns found on 
the Web. These authors tested the efficacy of the extracted 
features by using them to cluster 214 words taken from 13 
semantic categories in WordNet (henceforth this 
experimental setup is denoted AP214), and report an 
accuracy of 0.85 in replicating the category structures of 
WordNet. But if the pragmatic neighbors of a term are 
instead used as features for that term, and if a term is also 
considered to be its own neighbor, then an even higher 
accuracy of 0.934 is achieved on AP214. Indeed, using 
pragmatic neighbors as features in this way requires a 
vector space of just 8,300 features for AP214, whereas 
Almuhareb and Poesio’s original approach to AP214 used 
approx. 60,000 features. 
 Intuitively, writers use the pattern “Xs and Ys” to denote 
an ad-hoc category, so topics linked by this pattern are not 
just similar but truly comparable, and perhaps 
interchangeable. Choices of vehicle for T are ranked by 
their perceived similarity to T, as described above. Thus, 
when generating metaphors for philosopher, the most 
highly ranked vehicles suggested via the Google 3-grams 
are: scholar, epistemologist, ethicist, moralist, naturalist, 
scientist, doctor, pundit, savant, explorer, intellectual and 
lover.  

4.2  Mixed Metaphors and Conceptual Mash-ups 
The problem of finding good metaphors for a topic T is 
highly under-constrained, and precisely which neighbor of 
T to use as a metaphorical vehicle for T will depend on the 
contextual goals of the speaker. However, when metaphor 
is used introspectively for knowledge acquisition, we can 

make use of a context-free structure dubbed a conceptual 
mash-up.  If V1 … Vn are the n closest neighbors of T as 
ranked by similarity to T, then a mash-up can be 
constructed to describe the semantic potential of T by 
collating all of the questions from which the system 
derives its knowledge of V1 … Vn, and by repurposing 
each for T. A complete mashup collates questions from all 
the neighbors of a topic, while a 10-neighbor mashup for 
philosopher, say, would collate all the questions possessed 
for scholar … explorer and then insert philosopher as the 
subject of each. In this way a conceptual picture of 
philosopher could be created, by drawing on beliefs such 
as naturalists tend to be pessimistic and humanists care 
about morality. 
 A 20-neighbor mashup for philosopher would also 
integrate the system’s knowledge of politician into this 
picture, to suggest e.g. that philosophers lie, philosophers 
cheat, philosophers equivocate and even that philosophers 
have affairs and philosophers kiss babies. Each of these 
hypotheses can be put to the test in the form of a Web 
query; thus, the hypotheses “philosophers lie” (586 Google 
hits), “philosophers cheat” (50 hits) and “philosophers 
equivocate” (11 hits) are each validated via Google, 
whereas “philosophers kiss babies” (0 hits) and 
“philosophers have affairs” (0 hits) are not. As one might 
expect, the most domain-general hypotheses show the 
greatest promise of taking root in a target domain. Thus, 
“why do artists use Macs?” is more likely to be 
successfully transferred in a metaphor than “why do artists 
use perspective drawing?”. 
 The generality of a question is related to the number of 
times it appears in our knowledge-base with different 
subjects. Thus, “why do ___ wear black” appears 21 times, 
while “why do ___ wear black hats” and “why do ___ wear 
white coats” each just appear twice. When a mash-up for a 
topic T is presented to the user, each imported question Q 
is ranked according to two criteria: Qcount, the number of 
neighbors of T that suggest Q; and Qsim, the similarity of T 
to its most similar neighbor that suggests Q. Both can be 
combined into a single salience measure Qsalience as in (1): 

   (1)    Qsalience   =    Qsim * Qcount / (Qcount + 1) 

It is time-consuming to test every question in a mash-up 
against Web content, as a mash-up of m questions requires 
m Web queries. It is more practical to choose a cut-off w 
and simply test the top w questions, as ranked by salience 
in (1). In the next section we evaluate the ranking of 
questions in a metaphor or mash-up, and estimate the 
likelihood of successful knowledge transfer from one topic 
to another. 

5.  Empirical Evaluation 
The locality assumption constrains the number of vehicles 
that can contribute to a metaphor or mash-up. Knowledge 



of a vehicle V can be transferred to topic T only if V and T 
are pragmatic neighbors, as identified via corpus analysis. 
Yet, the Google 3-grams suggest a wealth of neighboring 
terms, so locality does not unduly hinder the transfer of 
knowledge. Consider a test-set of 10 common terms, artist, 
scientist, terrorist, computer, gene, virus, spider, vampire, 
athlete and camera, where knowledge harvested for each 
of these terms (see section 3) is introspectively transferred 
to all of their pragmatic neighbors. For instance, “why do 
artists use Macs?” suggests “musicians use Macs” as a 
hypothesis, which is validated by 5,700 Web hits. In total, 
410,000 hypotheses are generated from these 10 terms, and 
when posed as Web queries to validate their content, 
approx. 90,000 (21%) are validated by usage in Web texts. 
 Knowledge tends to cluster into pragmatic 
neighborhoods (this, after all, is the basis of 
categorization), and hypotheses likewise tend to be 
validated in clusters. As illustrated in Figure 1, the 
probability that a hypothesis is valid for a given topic 
grows with the number of neighbors for which it is already 
believed to be valid (Qcount). 

Figure 1. Likelihood of a hypothesis in a metaphor or 
mash-up being validated via Web search (y-axis) for 
hypotheses suggested by Qcount  neighbors (x-axis). 

Unsurprisingly, close pragmatic neighbors with a high 
similarity to the topic exert a greater influence than more 
remote neighbors. Figure 2 shows that the probability of a 
hypothesis for a topic being validated by Web usage grows 
with the number of the topic’s neighbors that suggest it and 
its similarity to the closest of these neighbors (Qsalience). 

 
Figure 2. Likelihood of a hypothesis in a metaphor or 
mash-up being validated via Web search (y-axis) for 
hypotheses with a particular Qsalience measure (x-axis). 

In absolute terms, hypotheses perceived to have high 
salience (e.g. > .6) are much less frequent than those with 
lower ratings. So a more revealing test is the ability of the 
system to rank the hypotheses in a metaphor or mash-up so 
that the top-ranked hypotheses have the greatest likelihood 
of being validated on the Web. That is, to avoid 
information overload, the system should be able to 
distinguish the most plausible hypotheses from the least 
plausible, just as search engines like Google are judged on 
their ability to push the most relevant hits to the top of their 
rankings.  
 Figure 3 shows the average rate of validation for the top-
n hypotheses (as ranked by perceived salience) of complete 
mash-ups generated for each of our 10 test terms from all 
of their neighbors. Since these are common terms, they 
have many neighbors that suggest many hypotheses. On 
average, about 85% of the top 20 hypotheses in each mash-
up are validated on the Web as plausible, while just 1 in 4 
of the top 60 hypotheses in a mashup is not Web-validated. 

Figure 3. Average % of top-n hypotheses in a mash-up (as 
ranked by Qsalience) that are validated by Web search. 

Figures 1 – 3 show that the system is capable of extracting 
knowledge from the Web (section 3) which can be 
successfully transferred to neighboring terms via 
metaphors and mashups (section 4), and then meaningfully 
ranked by salience. But just how useful is this knowledge? 
To determine if it is the kind of knowledge that is useful 
for categorization – and thus the kind that captures the 
perceived essence of a concept – we use it to replicate the 
AP214 categorization test of Poesio and Almuhareb 
(2004). Recall that AP214 tests the ability of a feature–set / 
representation to support the category distinctions imposed 
by WordNet, so that 214 words can be clustered back into 
the 13 WordNet categories from which they are taken. 
Thus, for each of these 214 words, we harvest questions 
from the Web, and treat each question body as an atomic 
feature of its subject. 



 

Figure 4. Performance on AP214 improves as more 
knowledge is transferred from the n closest neighbors of a 
term. 

Clustering over these features alone offers poor accuracy 
when reconstructing WordNet categories, yielding a cluster 
purity of just over 0.5. One AP214 category in particular, 
for time units like week and year, offers no traction to the 
question-based approach, and accuracy / purity increases to 
0.6 when this category is excluded. People, it seems, rarely 
question the conceptual status of an abstract temporal unit.  
 But as knowledge is gradually transferred to the terms in 
AP214 from their pragmatic neighbors, so that each term is 
represented as a mash-up of its n nearest neighbors, 
categorization markedly improves. Figure 4 shows the 
increasing accuracy of the system on AP214 (excluding the 
vexing time category) when using mashups of increasing 
numbers of neighbors. Metaphors really do bolster our 
knowledge of a topic with insights that are relevant to 
categorization. 

6.  Concluding Remarks 
Inside every “why do” or “how do” question sits a simpler 
“do” question which presupposes an affirmative answer. 
One needs world knowledge to pose such questions, but 
conveniently for computationalists, this knowledge is made 
obvious in the form of the question itself. So a computer 
can acquire this knowledge simply by eavesdropping on 
other people’s questions, and in doing so, learn the 
questions that are most salient for a given topic. A system 
that acquires its knowledge from the questions of others 
also learns how to introspect, insofar as it learns how to 
pose meaningful questions of its own for similar / related 
topics. 
 We have shown here how questions can provide the 
world knowledge needed to drive a robust, empirically-
founded model of metaphor processing. The ensuing 
powers of introspection, though basic, can be used to 
speculate upon the conceptual make-up of a given topic, 
not only in individual metaphors but in rich, informative 
mash-ups. The Web is central to this approach: not only 
are questions harvested from the Web, but newly 

introspected hypotheses are also validated by means of 
simple Web queries. The resulting approach is practical, 
robust and quantifiable, and uses an explicit knowledge 
representation that can be acquired on demand for a given 
topic. Most importantly, this approach makes a virtue of 
metaphor, and argues that computationalists should study 
metaphor not as a problem of language but as a tool of 
thought, one that can be used to leverage knowledge on a 
computer just as in the mind.  
 We have presented a somewhat devious (if laborious) 
maneuver for gaining access to the most popular questions 
posed to a commercial search engine. Nonetheless, a great 
deal more knowledge could usefully be mined by looking 
at the query logs themselves, in their entirety. Barring 
access to such a rich source of questions, it may prove just 
as informative to focus on the growing stream of linguistic 
data produced on micro-blogging sites such as Twitter. 
These new forms of social media encourage people to 
speak as they think, and to effectively introspect aloud. 
Amid this innocuous chatter, computers may find just what 
they need to think and to introspect for themselves. 
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