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Abstract

Analogy is a cognitive process that propels many of
our most creative leaps, from the cross-domain forays
of scientific discovery and case-based reasoning to the
poetry of metaphor, bisociation and blending. By con-
cerning itself with the shape of meanings, and the struc-
tural arrangements of their parts, analogy allows us to
unite different meanings with similar shapes across dis-
tant domains. Crucial to this unification, or mapping, of
domains is the ability to abstract over structural repre-
sentations that capture the broad sweep of an idea with-
out getting bogged down in details. This paper presents
a large new resource for analogical mapping that de-
fines structured representations to support abstraction at
multiple levels, but without information loss. This al-
lows the mapping process to be flexible in its reconcil-
iation of different meanings, while also preserving the
distinctions that make abstraction necessary in the first
place. This resource, named ATLAS, is a wide-ranging
database of symbolic structures for lexical concepts (the
ideas behind common words), and is designed to sup-
port explicit analogical reasoning in an era where sym-
bolic reasoning is giving way to the statistics of LLMs.

Introduction: The Mind Has Mountains
Our most compelling and memorable arguments often rest
on an analogy, even if a sharp insight can easily cut both
ways. Consider this exchange from the 1993 film Jurassic
Park, in which the park’s owner, Hammond, defends the car-
nage that has ensued with an analogy to an iconic resort:

Hammond: All major theme parks have delays. When
they opened Disneyland in 1956, nothing worked!

Malcolm: Yeah, but, John, if The Pirates of the Carib-
bean breaks down, the pirates don’t eat the tourists.

In Hammond’s analogy, Disneyland serves as the familiar
source domain through which the implied target, Jurassic
park, is viewed (Gentner 1983). But Malcolm inverts this
analogy, and instead uses the latter as a source domain to
reimagine the former. Each analogy re-frames the context to
suit the speaker’s own worldview: Hammond seeks to down-
play the enormity of his park’s failings, while Malcolm’s
counterfactual aims to remind him of the fatal consequences
of his hubris. It is the isomorphic structure of each domain

– immersive theme parks with hi-tech attractions – that en-
ables these analogies to map so easily from one to the other,
as in animatronic to genetic and pirate to dinosaur, and to
suggest new candidate inferences, such as Malcolm’s allu-
sion to tourist-gobbling pirates (Gentner and Toupin 1986;
Falkenhainer, Forbus, and Gentner 1989). Identifying this
shared structure is the job of an analogical mapping engine,
yet such structures must already be present for such a map-
ping to occur. Creating a large database of these structures
to support analogical mapping and retrieval is our goal here.

As in metaphor and simile, analogy relies on abstraction
to reconcile two different domains of experience or concep-
tual content. Abstraction is what allows us to get to the nub
of an idea, and to equate very different meanings on the ba-
sis of a common gist (Gentner and Hoyos 2017). In anal-
ogy, this shared core is essentially structural, even if the two
domains also have emotions and other features in common.
There are two basic approaches to structural abstraction in
analogy: in the first, the analogist identifies a subset of the
content of one domain that is isomorphic to a corresponding
sub-structure in the other, where isomorphism insists that
both sub-structures have the same shape, and the same ar-
rangement of labeled edges. If those edges connect different
vertices in the source and target, a consistent 1-to-1 map-
ping from source to target vertices must also be possible. In
essence, analogical structure mapping is a variant of the NP-
hard problem largest sub-graph isomorphism, and so is itself
NP-hard as a result (Veale and Keane 1997). The second ap-
proach generalizes an isomorphic mapping to sub-structures
that have the same shape even if their edges have different
labels, and so produces a mapping of vertices and relations,
provided the relations in one structure are similar to those in
the other. This second approach lifts abstraction to the next
level, by allowing domains themselves to be re-represented
during the mapping process (Hofstadter and Mitchell 1995).

(Gentner and Hoyos 2017) define “abstraction” as the de-
crease in specificity, and concomitant increase in scope, of a
concept. Thus, as a source structure sheds specific details, it
becomes applicable to a broader range of analogical targets.
In this view, abstraction necessarily entails information loss,
as only the most systematic core of the structure is retained.
However, in an analogical mapping, only certain elements –
the relational edges – are matched identically, while others –
the vertices – are mapped non-identically in 1-to-1 pairings.



A loss-free process of abstraction via re-representation can
preserve information if it shifts components that are matched
identically into positions that are mapped non-identically.
We present such a process in this paper, to build a resource,
named ATLAS, that provides conceptual structures at multi-
ple levels of abstraction for a wide range of words and ideas.

We must first define what we mean by a conceptual struc-
ture, and what it means to abstract over such a structure.
To populate ATLAS at scale, we will leverage existing re-
sources that were previously built to enable the generation
of metaphors, blends and stories, such as the talking points
model of (Veale 2014; 2015). As the semantic triples defined
by this model are too shallow to support structure mapping
as defined in (Gentner 1983; Falkenhainer, Forbus, and Gen-
tner 1989), we shall present a rule-based means of construct-
ing richly nested structures from these rather flat ingredients.
As the new structures will vary in depth and breadth, we will
define a measure of richness that will allow a mapping en-
gine to rank the structures that define a concept by how well
they embody the systematicity principle of (Gentner 1983).

We will also present a mapping algorithm and a retrieval
algorithm to work efficiently with the structures of ATLAS.
The analogy literature is replete with alternatives (Falken-
hainer, Forbus, and Gentner 1989; Holyoak and Thagard
1989; Hofstadter and Mitchell 1995; Veale and Keane 1997),
but we shall define variants of the highly efficient structure-
hashing approach of (Veale 2005) that work especially well
with our model of loss-free abstraction. ATLAS defines over
two million structures across more than 9000 word concepts,
making efficient storage, retrieval and mapping a necessity.
But we must start at the beginning, to consider the assump-
tions that are made by structure-mapping models of analogy.

That would be an ecumenical matter
Representation is always a matter of choice: of what to rep-
resent, of which viewpoint to adopt, of what level of detail
to capture, and with what feature set to encode it. An open
representation can utilize an unlimited set of symbols, while
a small number of primitives may suffice in a closed system.
These choices introduce a great deal of wiggle room into any
symbolic representation that is used for analogical mapping.

Every analogical system will bring its own assumptions
to bear upon its representation of the world. Consider SME,
the Structure-Mapping Engine of (Falkenhainer, Forbus, and
Gentner 1989), which is a computational realization of the
structure-mapping theory (SMT) of (Gentner 1983). While
SME/SMT is open with respect to the choice of symbols for
relations and attributes in any given domain, it assumes that
the most systematic relations – such as those for causality
– are shared across domains, and that these relations form
hierarchical structures corresponding to nested propositions.
The graph representation of a domain is thus a forest of inter-
connected tree structures, and a mapping can be constructed
for the whole, or the largest sub-graph of the whole, by first
finding partial mappings for the largest and deepest trees.
A global mapping is then produced by merging a consistent
selection of these partial mappings into a coherent whole.

Nesting is another choice that a representation may use,
or not. The Sapper model of (Veale and Keane 1997) repre-

sents domains as a semantic-network of vertices and labeled,
directed edges. An edge encodes a relation between two en-
tities, and takes its label from a closed set of relation types.
Sapper does not define distinct domains for different ideas.
Rather, a single large graph encodes all concepts, so that the
local region around a given node is the domain of that node.
With no pockets of nested structure to exploit, Sapper seeks
out pathways in the network that originate at the nodes for
the two ideas that one is aiming to map. When pathways that
comprise the same sequence of relations meet at a common
association, they are placed into analogical correspondence
to form a partial mapping. As in SME, a global mapping is
constructed by merging partial maps into a coherent whole.

Each model works rather well on its own representations,
but Sapper simply cannot use SME’s representations, while
SME finds no nesting to exploit in Sapper’s graph structures.
SME senses systematicity in the depth of nested structures,
but Sapper sees it in the length of extended pathways. Each
is blind to what makes the other’s mappings systematic. If a
common representation, and a shared database of structures
usable by both approaches, is thus not feasible, we might, in-
stead, map from one model’s worldview onto the other’s. We
can, for instance, flatten SME’s nested representations into
a semantic network by introducing new nodes to represent
branching points in its structures. Conversely, we can add
causal nesting to Sapper-like graphs, to represent the higher-
order connections between flat node-to-node relations.

We take the latter route here, but we need a starting point:
a database of content on which to apply our transformations.
The AnalogyKB of (Yuan et al. 2024) is a large knowledge-
base of structured symbolic content derived from WikiData
(Vrandecčı́c and Krötzsch 2014) and ConceptNet (Speer,
Chin, and Havasi 2017). Each resource expresses its knowl-
edge in the form of predicate-subject-object triples; Wiki-
Data triples convey dry, objective facts (such as the CEO
of company X is Y, or the capital of country A is B), while
ConceptNet offers more subjective claims about the world.
This kind of knowledge supports proportional reasoning of
the A is to B as C is to D variety (A:B::C:D), as in Sam Alt-
man is to OpenAI as Donald Trump is to USA. Proportional
analogy, first studied by Aristotle in his Poetics, was once
a cornerstone of the Scholastic Aptitude Test (or SAT), and
computational solvers have been presented by (Veale 2004)
and (Turney and Littman 2005), among others. These analo-
gies are sometimes the tip of a structural iceberg, implying
mappings beyond that of A to B and C to D, but we need to
excavate that structure to support richer, deeper analogies.

The knowledge defined in (Veale 2014; 2015) to support
story generation systems also has a flat triple structure, but
since these triples are designed to work together, or indeed to
click together like pieces of track, it is easier to imagine how
a nested causal structure can be imposed on top. Moreover,
these story-oriented triples concern commonsense ideas and
stereotypical associations, not contingent facts, and can thus
support analogies at the level of ideas rather than facts. In
the next section we describe how rich causal structures can
be assembled at scale from these flat triples, to support ana-
logical mapping and retrieval at various levels of abstraction.
We must start with abstractions, in the form of linking rules.



The Shape Of Meaning
The following tuples are representative of the 85,000 or so
predicate-subject-object triples provided by (Veale 2014):

(work in scientist lab)
(conduct lab experiment)
...
(serve priest congregation)
(perform congregation worship)

There is an intuitive linkage between work in and conduct in
the first case, and between serve and perform in the second:
scientists work in labs that conduct experiments, and priests
serve congregations that perform worship. So, our first task
is to merge these disparate facts into composite structures:

(work in scientist (some lab (that (conduct experiment))))
...
(serve priest (some congregation (that (perform worship))))

We first codify these intuitions with a pair of abstractions:

(work in personX (some placeY (that (conduct actionZ))))
...
(serve personX (some placeY (that (perform actionZ))))

These hand-crafted abstractions have the function of rules:
they allow pairs of triples that relate a personX , a placeY
and an actionZ to be coalesced into a nested structure. With
enough abstractions like these, we can impose new structure
on many of the flat, disjoint triples of the original database.

These abstractions have the same shape, yet they cannot
be aligned without violating the SMT condition of predi-
cate identicality, as conduct ̸= perform and work in ̸= serve.
However, if we rewrite the original facts as follows, using a
smaller, canonical set of predicates, a mapping is possible:
(by working (perform scientist

(some work (for lab
(that (conduct experiment))))))

(by serving (perform priest
(some service (for congregation

(that (conduct worship))))))
The rewriter maps the original, open-ended set of predicates
onto a reduced set of just 12, such as perform and enhance.
The rewritten structures are more general, since they use a
small set of predicates, yet they incur no loss of information,
as they preserve the distinction between work in and serve.
Not only are these structures alignable under SMT, they pro-
duce a richer mapping, of scientist:priest, lab:congregation,
experiment:worship, working:serving and work:service.

By further abstracting over these canonical variants, using
numbers as variables, we obtain this unique generalization:

(by 0 (perform 1 (some 2 (for 3 (that (conduct 4))))))

Following (Veale 2005) we call this a structural hash, which
serves as a key for all structures that produce the same hash.
So, to find potential analogues for a given structure, we sim-
ply abstract to its hash, and directly look up all other struc-
tures in the ATLAS database with the same abstraction key.

Mapping & Retrieval of Analogous Structures
The domain of an idea such as priest or magic is the set of all
structures associated with the term in the ATLAS database.
To flesh out an analogy between a source set of structures S
and a target T , the systematicity principle of (Gentner 1983;
Falkenhainer, Forbus, and Gentner 1989) dictates that the
most comprehensive structures are mapped first. As a guide,
we define r(σ) as a measure of the richness of a structure σ:

r(σ) = log10

n∑
i=0

counti(σ)10
i

The deepest level of nesting in σ is n, and counti(σ) is the
number of σ’s sub-parts at level i. For our canonical rewrit-
ing of the claim that scientists perform work for a lab that
conducts experiments, r(σ) = 5.05. For the facts (work in
scientist lab) and (serve priest congregation), r(σ) = 0.

Structural hashing makes the mapping process highly ef-
ficient. For each structure σS in S, we calculate hash(σS)
and index σS under this key. For each structure σT in T ,
we calculate hash(σT ) and use this key to lookup the set of
equivalent structures {σS} that were just indexed for S. We
use r(σT ) to order our search of the structures in T , so that
the first mapping produced, σT : σS , is the most systematic.
As we proceed through other structures in T of successively
lower richness, we greedily merge any other mapping that is
produced into the cumulative whole if it is coherent to do so.

The retrieval of an idea/domain S to analogically describe
a target T proceeds in a similar fashion, and follows the
“many are called but few are chosen” principle of (Forbus,
Gentner, and Law 1995): using r to rank the structures {σT }
of T from most to least rich, we calculate hash(σT ) for each
structure in turn, and retrieve all other structures indexed un-
der this key in the ATLAS database. From these we extract a
set {S0, S1, ..., Sn} of candidate sources for T . For a candi-
date Si, the quality of the mapping of Si to T is a function of
both the number and the richness of the alignable structures
that unite T and Si. Should we reward sources with many
alignable structures of low richness – unconnected facts –
over sources with a few rich, or just one very rich, align-
ment? The quality q of Si as a source for T is defined over
the alignable structures {σ0, σ1, ..., σn} of Si as follows:

q(Si, T ) =
n∑

j=0

r(σj)
β

where β is our non-linear reward for systematicity. So when
β = 3, which it is by default, q(Si, T ) becomes the sum of
the cubes of the richness of each structure σj in Si that can
be mapped onto an equivalent structure σk in T . The choice
of β allows us to reward analogies with a single systematic
core over those with many disjoint, low-level similarities.

The use of abstraction to rewrite structures in a canonical
form, and then turn those forms into generic hashes, allows
for the efficient mapping between two sets, or domains, of
structures, as well as for the efficient retrieval of analogies.
Every structure in every domain is indexed by these abstract
hashes, making abstraction central to the organization of the
ATLAS knowledge-base and the processes that act upon it.



Abstraction as an Organizing Principle
Abstraction is achieved through a suitable choice of struc-
tured representation (Forbus, Liang, and Rabkina 2017). In
the case of ATLAS, this is constructed from the content of a
flatter, more disjoint and less mapping-rich knowledge-base.
To achieve scale, diversity and structural depth, we use over
two-thousand abstraction rules to link separate triples in the
representation of (Veale 2014) into causal combinations. We
have seen a thru-rule that links a person in a place to the
activity conducted there, but most rules are cross-rules that
link two facts about the same subject. Some cross-rules link
goals to outcomes, to build structures such as the following:

(if (can (by seeking (seek scientist advance (as outcome))))
(can (by advancing (enhance scientist sophistication

(of science)))))

An alignable structure in a different domain is the following:

(if (can (by seeking (seek priest proselyte (as supporter))))
(can (by spreading (enhance priest spread

(of doctrine)))))

Other rules integrate (Veale 2011)’s stereotypical properties
dataset to add highly salient features to these structures:

(by working (perform scientist work
(in (some science

(when exacting (lack flexibility))))))

(by serving (perform priest service
(in (some church

(when dogmatic (lack flexibility))))))

By coalescing and cross-combining representations in this
way, we can populate ATLAS with structures for over 9,000
concepts, from science to politics to magicians to war. For
these, ATLAS defines a total of 1.7 million canonical struc-
tures which, in turn, are abstracted into 114,000 structural
hashes. Canonical rewriting increases the alignability of AT-
LAS’s contents: less than 2% of canonical structures cannot
be mapped to, or aligned with, at least one other structure.

As a good analogy may hinge on the mapping of a single
systematic structure, Table 1 shows the mean number of can-
didate sources for a target if we impose a minimum richness
(r) for their core alignable structures. So, although the very
deepest structures (r ≥ 8.0) are not commonplace, support-
ing analogies for just 1 in 8 targets, ATLAS also supports a
great many analogies at lower levels of structural richness.

Minimum r value Mean sources per target
2.0 2396.55
3.0 558.25
4.0 503.21
5.0 218.89
6.0 40.88
7.0 6.74
8.0 0.12

Table 1: The mean number of sources retrieved per target
domain with alignable structures of a minimum richness r.

Conclusion: Abstraction Finds a Way
Analogy is both a starting and an end-point in the cycle of
inspiration. For instance, the author Michael Crichton based
Jurassic Park on Westworld, a film that he directed in 1973,
in which the robotic cowboys of a Western-themed park run
amok. To motivate their homicidal rampage, Crichton would
invent the analogy of a computer virus, more than a decade
before hackers would make it a literal reality. Crichton had
been inspired to write Westworld after a trip to Disneyworld,
where the mechanical pirates about which Malcolm would
later joke sparked an abiding interest in science gone wrong.
With advances in genetics and cloning, Westworld’s killer
robots would later become the test-tube dinosaurs of Juras-
sic Park, where Malcolm’s Pirates of the Caribbean retort
would reconnect Crichton’s analogy with its Disney origins.

Abstraction is key to successful, far-reaching analogies
(Gentner and Hoyos 2017; Mitchell 2021), and so we put
abstraction at the core of ATLAS’s representation of the
world. It is abstraction that allows us to relate superficially
different experiences so as to perceive a deeper level of sim-
ilarity. In recent years, advances in Large Language Mod-
els (LLMs) have made analogy one of the many “language
games” (Wittgenstein 1953) that these models can play with
great fluency and aplomb. Since LLMs produce sequences
of language tokens, they conflate the tasks of inventing, pre-
senting and talking about an analogy; they do not deal di-
rectly with, or produce, explicitly structural representations.
Nonetheless, they can go far beyond the simple proportional
analogies of the SAT test. For instance, when asked to gener-
ate an explanatory metaphor for quantum mechanics, GPT-4
(Achiam et al. 2023) responds with a richly systematic (and
rather insightful) use of the theatre as a source domain. In
its mapping, which it elaborates in detail, the stage is clas-
sical physics, while the unseen ropes, pulleys and trapdoors
behind and below the stage comprise the quantum realm.

When compared to the nimbleness and generative reach of
LLMs, even on tasks such as analogical invention, the struc-
tured representations of symbolic AI can seem like relics of
a bygone era. But even the dinosaurs of Jurassic Park could
be reinvented for a new age by splicing in some novel DNA.
A long history of ideas in structure mapping is packed into
ATLAS not to compete against LLMs but to work with them.
ATLAS is an open repository1 with a scale comparable to
that of AnalogyKB (Yuan et al. 2024), but no such resource
is ever complete enough or robust enough by itself. We thus
anticipate two scenarioså in which ATLAS can work with an
LLM, to either guide the LLM or to be enriched by it. In the
first, relevant ATLAS structures can be retrieved for a target,
to drive few-shot prompting for analogies in an LLM. These
few-shot exemplars can guide an LLM to not just invent and
discuss a new analogy, but to formalize a comparable repre-
sentation for T and a source domain S. These symbolic rep-
resentations can then be checked for consistency and added,
in the second scenario, to ATLAS if they pass logical muster.
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