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1.  Introduction 
If a good story is not unlike a well-written computer program, the similarities run 

deeper than the fact that each is, ultimately, a kind of text. Rather, a story is a 

kind of literary software for achieving a desired effect on a reader. While some 

stories thrill, others chill, and some make us laugh or cry. As texts, both stories 

and programs concern themselves with the efficient flow of information, so each 

emerges as a surface rendering of a deeper logical structure: for stories, we call 

this structure the fabula or plot (Pérez y Pérez and Sharples 2023); for a 

computer program, this structure is the underlying algorithm. Moreover, writers 

of both kinds of software must be attentive to the limitations of their target 

hardware, from the size of one’s memory to one’s capacity for parallel and 

recursive processing. Given these similarities, it is hardly surprising that even 

before the advent of modern software, creators had sought to systematize the 

engineering of new stories along similar lines. 

 Certainly, the large language models (or LLMs) that have effected a recent 

and dramatic sea-change in the public perception of Artificial Intelligence (AI) 

see little difference between stories – or literature of any kind – and computer 

programs. To an LLM, a text is just a text, a contiguous sequence of tokens that 

is auto-regressively generated one token at a time (Radford et al., 2019; Bender 

et al., 2021). This makes LLMs just as adept at authoring programs as stories. 

What elevates an LLM above the level of digital philistine is the depth and 

complexity of its neural architecture, which turns each model into a heavily 

trained, finely tuned and highly contextualized player of language games. The 

writing of a story involves very different language games than the writing of a  

program, a poem, a joke, or a shopping list, yet while the rules may differ, the 

process remains the same, to LLMs at least. What changes is the context to 

which the LLM is attuned via its complex web of weights and probabilities.  

 The dramatic success of LLMs represents a victory for the neural/statistical 
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paradigm over the purely symbolic alternative, but this victory was not always 

assured. Despite showing some initial promise, research in artificial neural 

networks (ANNs) foundered during the first AI Winter of the 1970s, as early 

ANNs proved difficult to scale and to train. Before these barriers could be 

overcome, the impetus shifted back to the symbolic paradigm, which was, after 

all, the paradigm in which scholars had first made major inroads into the 

structural understanding of stories. But the symbolic paradigm would endure its 

own AI winter, before the advent of deep neural networks proved that ANNs 

could now be trained at web-scale. These two paradigms view stories, and 

literature more broadly, through very different lenses. For instance, LLMs 

seemingly make no distinction between a text’s surface and deep structures, 

and view literary generation as an end-to-end mapping of text inputs (a prompt) 

to text outputs (a continuation). Symbolic AI models, in contrast, typically identify 

different stages in story production, so as to explicitly model concerns such as 

plotting, characterization and surprise (Pérez y Pérez and Sharples, 2023).  

 To understand the future relationship of AI to literature, we must first learn 

from their past entanglements, from the purely symbolic to the statistical. A brief 

history of AI story generation is therefore presented in the next section. To 

understand how stories cultivate – and often dash – reader expectations, we 

next consider the problem of joke generation. Jokes, after all, are very short 

stories whose brevity encourages a great many short-lived expectations, and 

while LLMs currently exhibit a facile wit and a capacity for wordplay, it is 

instructive to explore why they still lack the ability to invent a good joke. Does 

this failing reflect the inherent difficulty of joke creation, or does it signify an 

intrinsic rigidity in how AIs model the expectations we bring to a text? A case 

study in the use of LLMs to generate comics is then presented, which allows us 

to offer some tentative predictions for the future of LLM-driven literary creativity.  

 

2.  What to expect when you’re expecting … a story 
Generation is the flipside of analysis. What we learn from analysis can be used 

to inform our generators, while a capable generator can demonstrate the validity 

of our analytical insights. Indeed, generation often yields more insights than 

pure analysis, insofar as simple mechanisms working in concert can give rise to 
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complex effects that might otherwise suggest a theory with too many moving 

parts (Braitenberg, 1984). In the case of story generation, this branch of AI owes 

a significant debt to the early structural analyses of Propp (1928) and Campbell 

(1949). The former’s inventory of morpheme-like story functions in a corpus of 

Russian folktales set the stage for combinatorial AI approaches to come (e.g., 

Gervás, 2016) while the latter’s positing of a “monomyth” structure to ancient 

tales of heroic endeavour laid the ground for generation via story “grammars” 

(Rumelhart, 1980; Veale, 2017). Those scholars were not interested in 

generation per se – certainly not automated generation – but even in 1928 we 

see efforts to systematize the creation of commercial stories that owe much to 

the structuralists’ insights, and which today look remarkably prescient in light of 

later developments in symbolic AI (Cook, 1928).  

 As such, story generation is a branch of AI – for the most part, symbolic AI – 

with a long provenance. Within this tradition, there are two high-level 

approaches to automating the story-writing process: one can model the goals 

and desires of a real author, or one can model the goals and desires of a 

fictional character. In contrast, LLMs tend to directly model the text itself as a 

polished artifact. This is not to say that LLMs cannot generate stories with 

compelling plots and believable characters, rather that these aspects are not 

explicitly treated in a dedicated, modular fashion that one can easily inspect. 

 Klein et al.’s (1973) Novel Writer, which is perhaps the first symbolic story 

generator of note, produced murder-mystery tales by simulating the “potential 

behavior of a set of characters.” Meehan's (1977) TALE-SPIN would later 

generate tales of woodland creatures by first creating a world of inter-related 

characters for a story to selectively describe and follow. Dehn's (1981) AUTHOR 

system represents the earliest attempt to seriously model the mind of a writer, 

by focusing on the authorial goals that constrain the development of a story. 

Lebowitz's (1985) UNIVERSE system was designed to generate scripts for 

soap-operas, while Turner's (1993) MINSTREL system focused on a very 

different genre, tales of Arthurian knights. Turner was chiefly motivated by what 

had worked for human authors in the past, and so relied upon a set of 

Transformer-Recall-Adapt methods to guide his generator's choices. The 

MEXICA system of Pérez y Pérez and Sharples (2001) also generates tales of 

knights and princesses, albeit in an Aztec setting, but much like Dehn's 
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AUTHOR, it also aims to model the mental processes of a human writer. Its E-R 

model of Engagement and Reflection engages with a developing story by first 

adding new actions, perhaps by dipping into its memory of past stories, before 

the reflection phase then considers the ramifications of those choices. 

 Other symbolic approaches to story generation engage in simulations of 

characters and their emotions (e.g., the STellA system of León and Gervás 

(2014), or make use of structuralist principles to generate new stories from an 

established ontology of character functions. The PropperWryter system of 

Gervás et al. (2019) uses insights from Propp's analysis of Russian folk tales to 

generate its plots, and has contributed to the plot of a West-End musical (titled 

Beyond The Fence). Although partially machine-generated, the musical was 

performed by human actors, rather than robots. In contrast, the stories produced 

by the Scéalability system of Veale (2017) are given a physical embodiment 

through the gestures and movements of two performing NAO robots (Wicke and 

Veale, 2020). Scéalability follows what is, essentially, a story-grammar approach 

to narrative generation (Rumelhart, 1980); an extensive grammar of action 

triples is first used to generate the fabula or plot, before this skeletal structure is 

then rendered into idiomatic English. A dash of whimsy is added by way of a 

large knowledge-base of familiar characters, real and fictional, whose pairings in 

apt but unexpected ways also foster humorous incongruity (Veale, 2021). 

 Most symbolic story generators rely on schematic generalizations in the 

mould of Propp, Cook and Campbell, and model storytelling as a process of 

instantiating a set of generic, reusable forms in diverse ways. Alternately, a 

system may employ an even higher-level goal-driven process that yields these 

structures on the fly. Conventional wisdom holds that a story must have “ups” 

and “downs”, so that the protagonist of a story faces obstacles with non-trivial 

solutions on the path to achieving their aims. Since the plans constructed to 

overcome these obstacles form a key part of the plot, and reveal to us a great 

deal about the characters themselves, Riedl and Young (2010) exploit this 

symmetry to view storytelling as a planning process. In AI, a plan is a temporally 

ordered sequence of actions to be executed in the furtherance of a goal; by 

transplanting this sequence onto a tale’s characters, a symbolic planner can 

give purpose to their actions and substance to their beliefs.  
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3.  What to expect when you’re expecting … a joke 
When our schematic generalizations about stories mesh together seamlessly, 

they usually work unnoticed in the backstage of cognition. It is only when they 

work against each other, as they so often do in jokes, that these predictive 

patterns and their limitations are thrown into the spotlight. Take this classic joke, 

which activates one time-worn pattern before ditching it for another: 

  My grandpa died peacefully in his sleep.  

  Unlike his passengers, who died screaming. 

According to Raskin (1984), a text must be compatible, in part or in whole, with 

two conflicting scripts for it to exhibit a humorous potential. A “script” is Raskin’s 

term – which he borrows from Schank and Abelson (1977) –  for the causal 

generalizations that guide our understanding of a narrative. He speaks merely of 

potential because humour can be subjective, and different audiences may react 

unevenly to the same stimulus. In the joke above, a key script is evoked by the 

setup, leading us to imagine much more than we are told. We infer that grandpa 

passed away quietly in his own bed, until the punchline forces us to invalidate 

this inference and instead place grandpa behind the wheel of a passenger 

vehicle. Perhaps you imagine a bus full of screaming school kids, or a coach 

filled with shrieking holidaymakers? The joke does not tell us what to think, but it 

does engage our individual imaginations to vividly plug the gaps. This gap-filling 

also spurs us to morally re-profile the events of the joke, so that grandpa shifts 

from victim to villain. No longer the blameless sufferer of a heart attack, grandpa 

is now recast as a careless driver who falls asleep at the wheel. Our emotions 

shift too, from sympathy to blame, as we point the finger at him. 

 There is no logical force to this interpretation, which in the end is just one of 

many possible readings of the joke. Perhaps grandpa did die at home in his bed, 

and it was the substitute driver who led grandpa’s regular passengers – “his” 

passengers as the joke puts it – to their doom? As noted in Veale (2004), jokes 

are not the logical mousetraps they are often portrayed to be. We are not 

trapped into thinking one way and then another, but merely invited to think in 

ways that maximize the humorous impact of the text. We actively collude in the 

telling of the joke by meeting the teller halfway. By placing a sleepy grandpa 
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behind the wheel of a crowded passenger vehicle, we get to blame the sweet 

old man for the awful tragedy that ensues. Without this blame, the joke loses its 

sweet-and-sour tang and fails to elicit a chuckle. 

 The conflicting script is introduced with the contrast marker “Unlike.” This 

defies our expectations on one level, but respects them on another. After all, we 

expect jokes to toy with our expectations and to leverage them against us. 

Raskin’s original proposal from 1984, his Semantic Script Theory of Humour (or 

SSTH), is elegantly minimal in its formulation: it simply posits the existence of a 

large, open-ended set of conceptual scripts, which a given text can activate to 

differing degrees, and a much smaller set of semantic oppositions along which 

those scripts can generate friction. As in grandpa’s case, the oppositions that 

are most conducive to humour tend to elicit moral or social judgments from an 

audience, and include good/bad, high/low stature, and obscene/non-obscene. 

As the joke unfolds, it becomes clear that the initially activated script is no longer 

fit for purpose, and a second must be engaged to explain the latest twist. The 

opposition between the two then spurs the audience to search for a resolution, 

to explain why these incompatible scripts can work together in this special case. 

This inter-script friction – or incongruity, as scholars dub it – is not funny in itself 

(Veale, 2004), rather it is the process of sense-making that follows that we find 

so satisfying. The skill of the comic lies not in evoking an opposition, but in 

imagining the unusual circumstances that make it surprisingly meaningful. 

 The comedian’s skillset draws on other factors that fall outside the remit of 

the SSTH, from timing – which is crucial – to word choice and phrasing, 

narrative strategy (e.g., quip, aphorism, shaggy dog tale, narrative joke) to 

knowledge of the audience and shared knowledge of the joke’s target or butt. 

For these, Attardo and Raskin’s (1991) GTVH, or General Theory of Verbal 

Humour, erects a more modular theory on the foundations of the SSTH. The 

GTVH aims to explain how different jokes can emerge from the same modular 

mechanisms. The theory’s most profound addition is also its most Proppian: the 

idea that every joke instantiates a specific logical mechanism that provides a 

high-level rationale for how and why the two scripts are to be set in conflict. It is 

the chosen logical mechanism, such as false analogy or faulty reasoning, that 

allows a joke to appear nonsensical at one level and quite sensible at another.  

 While scripts, oppositions and logical mechanisms are semantic constructs 
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that operate at different levels of abstraction, they must all work together in the 

end, just as one cog must mesh with others if a clock is to keep ticking. Since a 

common representation helps to ensure that this is the case, Raskin’s 

conception of scripts has evolved from the SSTH’s rigid, set-like structures into 

richer, more malleable graphs (Attardo, Hempelmann and Di Miao, 2002). With 

the GTVH’s evolution into the Ontological Semantics Theory of Humour, or 

OSTH (Raskin, Hempelmann and Rayz, 2009), scripts, oppositions and logical 

mechanisms now reside in the same densely cross-indexed ontology. By 

extending the GTVH’s Proppian turn, the OSTH has become closer in spirit to 

Cook’s Plotto, with its practical focus on the large-scale connectivity of ideas. It 

is this connectivity that allows us to nimbly hop between viewpoints, so as to 

approach and reframe even the most familiar ideas in unexpected ways. 

4.  How To Expect The Unexpected 
The expectations we bring to a story will range from the generic and abstract to 

the concrete and domain-specific. Although AI researchers and humanities 

scholars approach stories from very different angles, each has attempted to 

model these expectations in surprisingly similar ways. And while the diversity of 

our expectations has produced a corresponding diversity in the representations 

and processes that we build into our symbolic models, recent advances in the 

scaling and training of large language models offer a more unified view of the 

expectations we bring to the appreciation and generation of all kinds of stories. 

 A language model is, in essence, a probability distribution over the possible 

strings of a language. This allows an LLM to support a uniform probabilistic 

approach to the representation of every kind of linguistic expectation, from the 

paradigmatic to the syntagmatic and the semantic to the pragmatic. High-level 

questions of genre and script, and low-level questions of grammar and word 

choice, can all be uniformly answered by asking: what is the probability of any 

given word being the next word in an unfolding text? By attuning to context, and 

learning context-specific representations of the words in the training data, LLMs 

learn to master the diverse language games that we humans play with each 

other. But are LLMs more than the “stochastic parrots” that some (e.g., Bender 

et al., 2021) have labeled them? An analysis by Jentzsch and Kersting (2023) 

argues that ChatGPT is fun but not funny, in part because its LLM (GPT3.5T) 
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has been over-exposed during training to a small set of 25 jokes. ChatGPT does 

well when asked to explain humorous metaphors and similes, and it can grasp 

the intent of witty insults. But when asked to generate its own jokes, the results 

are painfully meretricious in their reliance on puns, scare-quotes and clichés.  

 Nonetheless, the system improvises well in a comedic fashion. A foundational 

principle of improv comedy is “yes, and …”: each performer tacitly says “yes” to 

the premises introduced by others “and” proceeds to build upon them. In this 

way, a silly premise becomes increasingly strained as it undergoes continued 

elaboration. Language models work in much the same way: given the initial 

premise of a user’s prompt, an LLM auto-regressively unfurls a continuation that 

takes this premise at face value (“yes”) and builds upon it (“and”). If the prompt 

plants the seed of a comic situation – for example, “Suppose they built a rotating 

restaurant on top of the leaning tower of Pisa” – the continuation will draw out its 

comic potential – “and the waiters serve hot soup while wearing roller skates.” 

Unsurprisingly, tech-savvy improv performers (e.g., Mirowski et al., 2020) have 

jumped all over the hallucinatory tendencies of LLMs to do just that. This use of 

AI may be interesting if you like improv, but perhaps less so if you like comedy. 

 Before training, the only a priori elements of an LLM are its hyper-parameters. 

These fix the number, width and type of its stacked layers, the dimensionality of 

the vector embeddings that it learns for different words, the size of its context 

window (how many words it must attend to at once), and the number of attention 

heads it should concurrently apply to this context (Radford et al., 2019). As a 

bottom-up learner, an LLM evolves its own contextual representations for each 

word in each context it is used, and simultaneously learns which aspects of 

these representations to attend to in different settings. This gives LLMs a 

mastery of style and genre, but it also allows them to generalize over content. 

An LLM naturally interpolates between the observations in its training data to 

imagine – or hallucinate – coherent arrangements of words it has never seen, 

while its learnt representations allow it to generalize from observed patterns to 

analogous arrangements of similar words that are, in a real sense, truly novel. 

This makes LLMs capable of what Giora et al. (2004) dub optimal innovation, or 

the ability of creative writers to sensibly balance the novel with the familiar. 

 From a given prompt, which may well be absurd to begin with, an LLM will 

unfurl a text that obeys the tacit rules of whatever language game the user is 
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playing. The coherence of the unfurled text is determined by the context window 

over which the LLM’s attention heads work, which can range from hundreds to 

thousands of words. As the LLM auto-regressively adds each new word, this 

window slides one step forward, so that earlier elements gradually lose their 

influence over later additions. This loss of coherence is subtle at first, but the 

cracks widen as the window shifts further away from the text’s initial premises. 

Consider a short story generated by the GPT-2 LLM as reported in Radford et 

al. (2019). The story unfurls in response to a prompt written in the breathless 

style of a tabloid newspaper, and continues in that genre in what seems like an 

homage to Raymond Queneau’s Exercises In Style (1949). The LLM’s tale 

recounts the discovery of English-speaking unicorns in the Andes, and goes on 

to speculate on the origins of this odd species, which it names “Ovid’s unicorn” 

for its “distinctive horn.” However, the species is said to be “four-horned” in the 

next sentence, but no further mention is made of this surfeit of horns as the text 

unfurls. Rather, true to its name, the unicorn later returns to being uni-horned. 

As befits an optimal innovation, the LLM strives to balance the novel with the 

familiar, but the familiar can sometimes stifle the most peculiar innovations. 

 The loss of coherence over long texts goes hand in hand with the user’s own 

loss of control. To regain control and minimize contextual drift, we can divide an 

ambitious goal into smaller sub-tasks. If these are fed sequentially to an LLM, its 

piecewise outputs can then be re-assembled to form a single Franken-text, 

provided that each sub-task works within a unifying context that is passed from 

one task to the next. To test this approach, Ventura (2023) explored the capacity 

of ChatGPT (see Leiter et al. 2023), a version of GPT-3.5 fine-tuned for 

dialogue, to serve as a co-author in the writing of an academic paper. Ventura’s 

end result is a paper within a paper: the inner paper was written with ChatGPT 

as a co-author, and explores the role of LLMs as co-creative writing partners, 

while the outer paper is a wholly human critique of this co-creative enterprise. 

 Starting from his own initial premise, Ventura generated a skeletal outline of 

the desired paper, and repeatedly prompted ChatGPT to put flesh on these 

bones. While the LLM did a good job of producing the kind of content that e.g., 

one expects of a literature review, it was robbed of any narrative momentum by 

the fractured nature of its interactions. The generated text fragments exhibited a 

great deal of overlap and repetition, and required considerable post-editing to 
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work into a coherent whole. More seriously, ChatGPT “hallucinated” most of its 

bibliographic references, despite academic citation being one of the few literary 

practices that have no need of optimal innovation. In the end, ChatGPT did write 

a significant amount of the finished paper, but demanded so much effort – too 

much, in Ventura’s view – to make such a collaboration worthwhile for now. 

 This is what we can expect whenever we impose, from the outside, a top-

down organization onto an essentially bottom-up process. We might expect 

better results if we ask LLMs to bring their own internal top-down intuitions to 

bear, since LLMs are trained with very many examples of humans doing just 

that. Consider how an LLM might respond when prompted with a brainteaser 

that requires algebraic or logical reasoning. If we keep the numbers human-

scale, LLMs will often give the right answer, but they are still prone to silly 

errors. A little prompt engineering, however, can improve the LLM’s success 

rate and provide more edifying solutions. Just by asking the LLM to “work the 

problem logically” or “to show its reasoning,” we can elicit outputs that exhibit 

top-down organization and a clear chain of thought. We are, in effect, prompting 

an LLM to play a different language game, one often played in textbooks, in 

which intermediate steps provide a clear and informative context for later ones. 

 In the same vein, the writer Joe Toplyn has turned his professional insights 

about jokes (Toplyn, 2014) into an AI system named Witscript (Toplyn, 2022) 

that guides an LLM along a chain of thought that is conducive to comedy. The 

system first prompts the LLM to identify the two main ideas, or “handles,” in a 

topical headline, before prompting it to suggest angles on each that will show 

them to be related. The two handles are textual, but they implicitly designate 

scripts in the sense of Raskin’s SSTH, while the angles designate their points of 

overlap. If the two scripts are sufficiently different, a natural opposition will 

suggest itself (Veale, 2004), providing the incongruity that so often fuels wit. 

Witscript’s LLM of choice, the latest GPT model, already possesses a facile wit 

of its own, one that captures the tones and rhythms of office banter rather well 

even if it still lacks the ability to write new jokes to a professional standard 

(Jentzsch and Kersting, 2023). However, by imposing an explicit control 

sequence that exploits aspects of humour theory, Toplyn’s system is able to 

elicit greater topicality and incongruity from its LLM. More generally, Witscript 

itself hints at the shape of things to come for LLMs in creative writing. If an LLM 
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is to be our sorcerer’s apprentice, we should not expect it to make leaps of the 

imagination, or jump to polished solutions in a single bound, but to serve as a 

cooperative partner in the step-by-step quest for better literary outputs. 

5.  Case Study: Generating Content for Topic Comic Strips 
Like many paradigm shifts in science, the transition from symbolic to neuro-

statistical AI has been neither sudden nor total. The two paradigms evolved 

side-by-side for decades, through the ups and downs of various AI winters, 

before advances in hardware and algorithms granted supremacy to the latter. 

But there is still much that a symbolic viewpoint can lend to the robustness and 

scalability of an LLM-based approach to literary creativity, not least the ability to 

guide the creation process along a top-down plan of action. When a task calls 

for symbolic knowledge to drive this process, we might even ask the LLM to 

produce this knowledge on demand, and in the desired symbolic format, since  

so much of what an LLM learns from web data is technical in nature.  

 As a case in point, consider the Excelsior system described in Veale (2022, 

2023). Excelsior is a symbolic generator of topical comic strips that strives to 

present a balanced view of the chosen topic. An Excelsior comic is specified as 

a sequence of panels using a bespoke XML schema, which specifies each 

panel as a combination of character poses, background images, captions and 

speech balloons. The pipeline from topic to comic is wholly symbolic, and first 

utilizes a number of distinct knowledge resources to flesh out its topic as a set of 

propositions. Each of these is given its own panel in the comic, with two 

recurring characters who argue for and against the proposition. These opposing 

characters are posed to suit their dialogue in each panel, and are placed against 

an equally apt choice of background. To augment the system’s own knowledge 

with dynamic content, a trawl of Twitter is also performed to identify trending 

hashtags on the given topic. A set of hashtag templates, such as #{X}Sucks and 

#Saint{X}, then maps any matching tags to an OSTH-like ontology to extract 

their propositional content and to give each an emotional framing. The 

ontology’s topology allows these framings, and their panels, to be ordered by 

emotional intensity to form a simple plot. For instance, a debate may move from 

curiosity to suspicion to disgust and hatred on one side of its treatment of X.    

 This pipeline is a proficient piece of symbolic clockwork, with a great many 
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decision points along the way that shape the substance of the final comic. Yet, 

despite its proficiency, it rarely delivers results that surprise and delight. Rather, 

it does what it is expected to do, with formulations that soon become stilted and 

stale with overuse. The system is the sum of its parts, and no more. This is true 

of an LLM also, but the breadth of its training data is so vast that no one person 

could ever internalize it all, or see the outputs of the LLM as an obvious function 

of a certain rule or a particular piece of prior knowledge. By replacing Excelsior’s 

symbolic pipeline with an LLM, we may greatly simplify its processes while also 

enhancing its capacity for surprise and occasional delight. 

 To start, we obtain a propositional model of the topic by asking the LLM for a 

set of semantic triples, of the kind used to build a symbolic knowledge graph. So 

that the LLM fully understands our request, we provide it with an example: 

 

User: A semantic triple of the form (Subject, predicate, object) that describes 

the concept Donut is as follows:  

    (Donut, has part, hole in the middle) 

  Now suggest 10 semantic triples to represent a neutral view of the 

concept Elon Musk. 

ChatGPT: Here are 10 semantic triples about Elon Musk: 

1. (Elon Musk, founder of, SpaceX) 

2. (Elon Musk, CEO of, Tesla) 

3. (Elon Musk, innovator in, transportation technology) 

4. (Elon Musk, investor in, artificial intelligence) 

: :  : 

10.  (Elon Musk, believer in, colonizing Mars) 
 

From these propositions we now generate the dialogue for a comic which, in this 

case, takes a balanced view of the topic Elon Musk. To achieve balance, we ask 

the LLM to match a benign view to a cynical view of each proposition in turn:  

 

User: Pithily express these triples as rhyming couplets, pairing a benign view with 

a cynical view in each. Prefix each with benign: or cynical: as appropriate. 
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ChatGPT: Certainly. 

  1.   Benign:  Elon Musk, SpaceX founder, reaching for the stars. 

  Cynical: Elon Musk, SpaceX founder, just wants to sell cars. 

2.  Benign:  Elon Musk, Tesla's CEO, making green cars cool. 

      Cynical: Elon Musk, Tesla's CEO, just wants to play the fool. 

 3.  Benign:  Elon Musk, transportation tech innovator, changing the game. 

  Cynical: Elon Musk, transportation tech innovator, just wants the fame. 

 4.  Benign:  Elon Musk, AI investor, pushing the boundaries. 

  Cynical: Elon Musk, AI investor, just wants more money. 
    :  : : 

 10.  Benign:  Elon Musk, Mars colonization believer, exploring the unknown. 

  Cynical: Elon Musk, Mars colonization believer, just wants to be shown. 
 

We ask the LLM for interlocking couplets so to reinforce the sense of balance in 

each panel. By batching our request, so that It operates on all ten propositions 

at once, we also ensure stylistic coherence across the ten couplets that are 

returned. Notice how each has the same call-and-response format, which lends 

the resulting comic a consistent feel overall, somewhat in the vein of the MAD 

Magazine parodies of old. We now have pithy dialogue to fill the speech 

balloons of our opposing characters; we next need an independent observer to 

voice the panel captions. Each caption must speak to the proposition debated in 

a panel, and do so in a distinctive voice of an recognizable narrator. We can ask 

an LLM to mimic any individual whose speech patterns are widely-parodied on 

the web, such as Donald Trump, to heighten the comedic sensibility: 
 

User: Pithily express these triples about Elon Musk as utterances in the style of 

Donald Trump. Use the same numbering as the triples. 

ChatGPT: 1.   Elon Musk, tremendous founder of SpaceX, folks. 

  Believe me, nobody does space like him. 

2.  Elon Musk, fantastic CEO of Tesla.  

    He's making America great again with electric cars.  

 3.  Elon Musk, incredible innovator in transportation technology. 

  He's doing a tremendous job, believe me. 
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 4.  Elon Musk, tremendous investor in artificial intelligence.  

  Nobody does AI like him, believe me! 
    :  : : 

 10.  Elon Musk, big believer in colonizing Mars.  

  He's making America great again in space, folks. 

With chaining and batching our requests to the LLM in this way, it is possible to 

replace the bulk of Excelsior’s symbolic pipeline with a simple prompting model. 

Context is vital to each of the prompts above, and must be carefully maintained. 

We can, for instance, prime our initial prompt for semantic triples by establishing 

a prior context in which the LLM is asked to summarize a set of recent hashtags 

about the topic, as dynamically retrieved from Twitter. This technique, known as 

Retrieval-Augmented Generation (or RAG), allows the LLM to use knowledge or 

database content that falls outside its original training data (Lewis et al., 2020).  

 
Figure 1. One page of an Excelsior/LLM comic on the topic of Elon Musk. 

It now remains for us to visually render the substance of the comic, as produced 

by the LLM, as a comic strip. To choose an apt pose for each piece of dialogue, 

we match a vector-space embedding of the dialogue text to the embeddings of 

each of Excelsior’s allowable poses. These vector embeddings, as provided by 
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the makers of ChatGPT, allow nuanced similarity judgments to be made in the 

latent geometric space that lies beneath the brittle realm of words and symbols. 

A comparable mapping is made from each semantic triple to Excelsior’s library 

of predefined backgrounds, to choose an apt background setting for each panel. 

A page of the resulting comic on the topic of Elon Musk is presented in Figure 1. 

 

6.  Conclusions: Symbolic Caterpillars and Statistical Butterflies 
It is an oversimplification to state that LLMs reduce everything to probabilities. 

The probabilistic view is nonetheless useful when talking about expectations, 

and especially those of creative authors and their audiences. By assigning 

probabilities to different continuations of a prompt, an LLM allows us to quantify 

the extent to which each is expected, and the surprise it might evoke. The more 

expected the continuation, the higher the probability assigned to it. Humour, or 

optimal innovation more broadly, complicates this simple picture. An unexpected 

continuation must still make sense, and must still cohere with its initial prompt. A 

humorous continuation must have a lower probability, but not too low. Whenever 

we prompt an LLM to deliver creative – perhaps humorous – results, we are, in 

effect, urging it to generate familiar surprises: outputs that surprise us in context 

while still clearly echoing that context and the LLM’s own training data.     

 Mimicry is a source of many familiar surprises. Human mimics do more than 

simply impersonate a famous target; they create as they mimic, to parody their 

target by inventing content that is both new and oddly familiar at the same time. 

This is why it is a mistake to dismiss LLMs as mere “stochastic parrots.” As has 

been argued here, the better animal metaphor is perhaps “statistical butterflies.” 

A single LLM is versatile enough to replace most of the components of a typical 

symbolic pipeline for literary generation, and proves a more nimble substitute in 

each case than the original bespoke component. LLMs bring context-sensitivity 

and nuance to each task they replace, allowing us to lend a distinctive voice to 

even the most mundane aspects of the generative process. So, in striving to 

exercise more control over this process in our automated literary endeavours, 

there is still value in using the top-down structures of existing symbolic systems 

as a means of reining in the wild generativity of an LLM, to deliver surprises that 

delight while being reassuringly familiar in all the ways that we want them to be.     
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